used for alphafold (make alphafold docker image) against gfw

Milot Mirdita dc74acf438 Only print #=GF DE stockholm description if it exists #276 3 年之前
.github fe1bb9a2ef Replace upload-release-asset with svenstaro/upload-release-action 3 年之前
cmake dfe42d34ef Add ASanOpt and set ASan to not optimize 3 年之前
data f165d54dee Try fixing MPI detection in regression test 3 年之前
lib 70d166074b Merge commit '0d1ed3cd87387cffb61a55a84fa4f6b71b5dd685' 3 年之前
scripts dc74acf438 Only print #=GF DE stockholm description if it exists #276 3 年之前
src f2ecf9c758 Explicitly set OpenMP num_threads 3 年之前
.gitattributes 919ad6ea6a Remove dependency on HHLIB and integrate everything into a single repository without submodules 5 年之前
.gitignore ff6453ac91 Cleanup cmake 6 年之前
CMakeLists.txt e7f21cf893 Port MMseqs2 SIMDe implementation back to HH-suite 4 年之前
Dockerfile 4d8433ef9d Fix PPC64LE build and run on travis through qemu 4 年之前
LICENSE 4be2dc5759 Merge branch 'master' of https://github.com/soedinglab/hh-suite 5 年之前
README.md 61627ffc56 Update README for precompiled binaries 3 年之前
azure-pipelines.yml 0d432770a3 Remove useless debug ls in azure 3 年之前

README.md

HH-suite3 for sensitive sequence searching

(C) Johannes Soeding, Markus Meier, Martin Steinegger, Milot Mirdita, Michael Remmert, Andreas Hauser, Andreas Biegert

BioConda Install Biocontainer Pulls Github All Releases Docker Pulls Build Status

The HH-suite is an open-source software package for sensitive protein sequence searching based on the pairwise alignment of hidden Markov models (HMMs).

Documentation

We provide an extensive user guide with many usage examples, frequently asked questions and guides to build your own databases.

Installation

HH-suite3 can also be installed by downloading a statically compiled version, conda or Docker. HH-suite3 requires a 64-bit system (check with uname -a | grep x86_64). On AMD/Intel CPUs it requires at least support for the SSE2 instruction set (check by executing cat /proc/cpuinfo | grep sse2 on Linux or sysctl -a | grep machdep.cpu.features | grep SSE2 on macOS). AVX2 is roughly 2x faster compared to SSE2. HH-suite3 also works on Linux systems with ARM64 and PPC64LE CPUs. Precompiled binaries for all supported systems can be found at mmseqs.com/hhsuite.

# install via conda
conda install -c conda-forge -c bioconda hhsuite 
# install docker
docker pull soedinglab/hh-suite
# static SSE2 build
wget https://github.com/soedinglab/hh-suite/releases/download/v3.3.0/hhsuite-3.3.0-SSE2-Linux.tar.gz; tar xvfz hhsuite-3.3.0-SSE2-Linux.tar.gz; export PATH="$(pwd)/bin:$(pwd)/scripts:$PATH"
# static AVX2 build
wget https://github.com/soedinglab/hh-suite/releases/download/v3.3.0/hhsuite-3.3.0-AVX2-Linux.tar.gz; tar xvfz hhsuite-3.3.0-AVX2-Linux.tar.gz; export PATH="$(pwd)/bin:$(pwd)/scripts:$PATH"

:exclamation: Only the self-compiled HH-suite3 version includes MPI support, since MPI configuration is specific to the local environment.

Available Databases

List of available database for HH-suite3:

Compilation

To compile from source, you will need a recent C/C++ compiler (at least GCC 4.8 or Clang 3.6) and CMake 2.8.12 or later.

To download the source code and compile the HH-suite execute the following commands:

git clone https://github.com/soedinglab/hh-suite.git
mkdir -p hh-suite/build && cd hh-suite/build
cmake -DCMAKE_INSTALL_PREFIX=. ..
make -j 4 && make install
export PATH="$(pwd)/bin:$(pwd)/scripts:$PATH"

:exclamation: To compile HH-suite3 on macOS, first install the gcc compiler from Homebrew. The default macOS clang compiler does not support OpenMP and HH-suite3 will only be able to use a single thread. Then replace the cmake call above with the following one:

CC="$(brew --prefix)/bin/gcc-10" CXX="$(brew --prefix)/bin/g++-10" cmake -DCMAKE_INSTALL_PREFIX=. ..

Usage

For performing a single search iteration of HHblits, run HHblits with the following command:

hhblits -i <input-file> -o <result-file> -n 1 -d <database-basename>

For generating an alignment of homologous sequences:

hhblits -i <input-file> -o <result-file> -oa3m <result-alignment> -d <database-basename>

A detailed list of options for HHblits is available by running HHblits with the -h parameter.

Reference

Steinegger M, Meier M, Mirdita M, Vöhringer H, Haunsberger S J, and Söding J (2019) HH-suite3 for fast remote homology detection and deep protein annotation, BMC Bioinformatics, 473. doi: 10.1186/s12859-019-3019-7

Links