123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610 |
- package metrics
- import (
- "math"
- "math/rand"
- "sort"
- "sync"
- "time"
- )
- const rescaleThreshold = time.Hour
- // Samples maintain a statistically-significant selection of values from
- // a stream.
- type Sample interface {
- Clear()
- Count() int64
- Max() int64
- Mean() float64
- Min() int64
- Percentile(float64) float64
- Percentiles([]float64) []float64
- Size() int
- Snapshot() Sample
- StdDev() float64
- Sum() int64
- Update(int64)
- Values() []int64
- Variance() float64
- }
- // ExpDecaySample is an exponentially-decaying sample using a forward-decaying
- // priority reservoir. See Cormode et al's "Forward Decay: A Practical Time
- // Decay Model for Streaming Systems".
- //
- // <http://www.research.att.com/people/Cormode_Graham/library/publications/CormodeShkapenyukSrivastavaXu09.pdf>
- type ExpDecaySample struct {
- alpha float64
- count int64
- mutex sync.Mutex
- reservoirSize int
- t0, t1 time.Time
- values *expDecaySampleHeap
- }
- // NewExpDecaySample constructs a new exponentially-decaying sample with the
- // given reservoir size and alpha.
- func NewExpDecaySample(reservoirSize int, alpha float64) Sample {
- if UseNilMetrics {
- return NilSample{}
- }
- s := &ExpDecaySample{
- alpha: alpha,
- reservoirSize: reservoirSize,
- t0: time.Now(),
- values: newExpDecaySampleHeap(reservoirSize),
- }
- s.t1 = s.t0.Add(rescaleThreshold)
- return s
- }
- // Clear clears all samples.
- func (s *ExpDecaySample) Clear() {
- s.mutex.Lock()
- defer s.mutex.Unlock()
- s.count = 0
- s.t0 = time.Now()
- s.t1 = s.t0.Add(rescaleThreshold)
- s.values.Clear()
- }
- // Count returns the number of samples recorded, which may exceed the
- // reservoir size.
- func (s *ExpDecaySample) Count() int64 {
- s.mutex.Lock()
- defer s.mutex.Unlock()
- return s.count
- }
- // Max returns the maximum value in the sample, which may not be the maximum
- // value ever to be part of the sample.
- func (s *ExpDecaySample) Max() int64 {
- return SampleMax(s.Values())
- }
- // Mean returns the mean of the values in the sample.
- func (s *ExpDecaySample) Mean() float64 {
- return SampleMean(s.Values())
- }
- // Min returns the minimum value in the sample, which may not be the minimum
- // value ever to be part of the sample.
- func (s *ExpDecaySample) Min() int64 {
- return SampleMin(s.Values())
- }
- // Percentile returns an arbitrary percentile of values in the sample.
- func (s *ExpDecaySample) Percentile(p float64) float64 {
- return SamplePercentile(s.Values(), p)
- }
- // Percentiles returns a slice of arbitrary percentiles of values in the
- // sample.
- func (s *ExpDecaySample) Percentiles(ps []float64) []float64 {
- return SamplePercentiles(s.Values(), ps)
- }
- // Size returns the size of the sample, which is at most the reservoir size.
- func (s *ExpDecaySample) Size() int {
- s.mutex.Lock()
- defer s.mutex.Unlock()
- return s.values.Size()
- }
- // Snapshot returns a read-only copy of the sample.
- func (s *ExpDecaySample) Snapshot() Sample {
- s.mutex.Lock()
- defer s.mutex.Unlock()
- vals := s.values.Values()
- values := make([]int64, len(vals))
- for i, v := range vals {
- values[i] = v.v
- }
- return &SampleSnapshot{
- count: s.count,
- values: values,
- }
- }
- // StdDev returns the standard deviation of the values in the sample.
- func (s *ExpDecaySample) StdDev() float64 {
- return SampleStdDev(s.Values())
- }
- // Sum returns the sum of the values in the sample.
- func (s *ExpDecaySample) Sum() int64 {
- return SampleSum(s.Values())
- }
- // Update samples a new value.
- func (s *ExpDecaySample) Update(v int64) {
- s.update(time.Now(), v)
- }
- // Values returns a copy of the values in the sample.
- func (s *ExpDecaySample) Values() []int64 {
- s.mutex.Lock()
- defer s.mutex.Unlock()
- vals := s.values.Values()
- values := make([]int64, len(vals))
- for i, v := range vals {
- values[i] = v.v
- }
- return values
- }
- // Variance returns the variance of the values in the sample.
- func (s *ExpDecaySample) Variance() float64 {
- return SampleVariance(s.Values())
- }
- // update samples a new value at a particular timestamp. This is a method all
- // its own to facilitate testing.
- func (s *ExpDecaySample) update(t time.Time, v int64) {
- s.mutex.Lock()
- defer s.mutex.Unlock()
- s.count++
- if s.values.Size() == s.reservoirSize {
- s.values.Pop()
- }
- s.values.Push(expDecaySample{
- k: math.Exp(t.Sub(s.t0).Seconds()*s.alpha) / rand.Float64(),
- v: v,
- })
- if t.After(s.t1) {
- values := s.values.Values()
- t0 := s.t0
- s.values.Clear()
- s.t0 = t
- s.t1 = s.t0.Add(rescaleThreshold)
- for _, v := range values {
- v.k = v.k * math.Exp(-s.alpha*s.t0.Sub(t0).Seconds())
- s.values.Push(v)
- }
- }
- }
- // NilSample is a no-op Sample.
- type NilSample struct{}
- // Clear is a no-op.
- func (NilSample) Clear() {}
- // Count is a no-op.
- func (NilSample) Count() int64 { return 0 }
- // Max is a no-op.
- func (NilSample) Max() int64 { return 0 }
- // Mean is a no-op.
- func (NilSample) Mean() float64 { return 0.0 }
- // Min is a no-op.
- func (NilSample) Min() int64 { return 0 }
- // Percentile is a no-op.
- func (NilSample) Percentile(p float64) float64 { return 0.0 }
- // Percentiles is a no-op.
- func (NilSample) Percentiles(ps []float64) []float64 {
- return make([]float64, len(ps))
- }
- // Size is a no-op.
- func (NilSample) Size() int { return 0 }
- // Sample is a no-op.
- func (NilSample) Snapshot() Sample { return NilSample{} }
- // StdDev is a no-op.
- func (NilSample) StdDev() float64 { return 0.0 }
- // Sum is a no-op.
- func (NilSample) Sum() int64 { return 0 }
- // Update is a no-op.
- func (NilSample) Update(v int64) {}
- // Values is a no-op.
- func (NilSample) Values() []int64 { return []int64{} }
- // Variance is a no-op.
- func (NilSample) Variance() float64 { return 0.0 }
- // SampleMax returns the maximum value of the slice of int64.
- func SampleMax(values []int64) int64 {
- if 0 == len(values) {
- return 0
- }
- var max int64 = math.MinInt64
- for _, v := range values {
- if max < v {
- max = v
- }
- }
- return max
- }
- // SampleMean returns the mean value of the slice of int64.
- func SampleMean(values []int64) float64 {
- if 0 == len(values) {
- return 0.0
- }
- return float64(SampleSum(values)) / float64(len(values))
- }
- // SampleMin returns the minimum value of the slice of int64.
- func SampleMin(values []int64) int64 {
- if 0 == len(values) {
- return 0
- }
- var min int64 = math.MaxInt64
- for _, v := range values {
- if min > v {
- min = v
- }
- }
- return min
- }
- // SamplePercentiles returns an arbitrary percentile of the slice of int64.
- func SamplePercentile(values int64Slice, p float64) float64 {
- return SamplePercentiles(values, []float64{p})[0]
- }
- // SamplePercentiles returns a slice of arbitrary percentiles of the slice of
- // int64.
- func SamplePercentiles(values int64Slice, ps []float64) []float64 {
- scores := make([]float64, len(ps))
- size := len(values)
- if size > 0 {
- sort.Sort(values)
- for i, p := range ps {
- pos := p * float64(size+1)
- if pos < 1.0 {
- scores[i] = float64(values[0])
- } else if pos >= float64(size) {
- scores[i] = float64(values[size-1])
- } else {
- lower := float64(values[int(pos)-1])
- upper := float64(values[int(pos)])
- scores[i] = lower + (pos-math.Floor(pos))*(upper-lower)
- }
- }
- }
- return scores
- }
- // SampleSnapshot is a read-only copy of another Sample.
- type SampleSnapshot struct {
- count int64
- values []int64
- }
- // Clear panics.
- func (*SampleSnapshot) Clear() {
- panic("Clear called on a SampleSnapshot")
- }
- // Count returns the count of inputs at the time the snapshot was taken.
- func (s *SampleSnapshot) Count() int64 { return s.count }
- // Max returns the maximal value at the time the snapshot was taken.
- func (s *SampleSnapshot) Max() int64 { return SampleMax(s.values) }
- // Mean returns the mean value at the time the snapshot was taken.
- func (s *SampleSnapshot) Mean() float64 { return SampleMean(s.values) }
- // Min returns the minimal value at the time the snapshot was taken.
- func (s *SampleSnapshot) Min() int64 { return SampleMin(s.values) }
- // Percentile returns an arbitrary percentile of values at the time the
- // snapshot was taken.
- func (s *SampleSnapshot) Percentile(p float64) float64 {
- return SamplePercentile(s.values, p)
- }
- // Percentiles returns a slice of arbitrary percentiles of values at the time
- // the snapshot was taken.
- func (s *SampleSnapshot) Percentiles(ps []float64) []float64 {
- return SamplePercentiles(s.values, ps)
- }
- // Size returns the size of the sample at the time the snapshot was taken.
- func (s *SampleSnapshot) Size() int { return len(s.values) }
- // Snapshot returns the snapshot.
- func (s *SampleSnapshot) Snapshot() Sample { return s }
- // StdDev returns the standard deviation of values at the time the snapshot was
- // taken.
- func (s *SampleSnapshot) StdDev() float64 { return SampleStdDev(s.values) }
- // Sum returns the sum of values at the time the snapshot was taken.
- func (s *SampleSnapshot) Sum() int64 { return SampleSum(s.values) }
- // Update panics.
- func (*SampleSnapshot) Update(int64) {
- panic("Update called on a SampleSnapshot")
- }
- // Values returns a copy of the values in the sample.
- func (s *SampleSnapshot) Values() []int64 {
- values := make([]int64, len(s.values))
- copy(values, s.values)
- return values
- }
- // Variance returns the variance of values at the time the snapshot was taken.
- func (s *SampleSnapshot) Variance() float64 { return SampleVariance(s.values) }
- // SampleStdDev returns the standard deviation of the slice of int64.
- func SampleStdDev(values []int64) float64 {
- return math.Sqrt(SampleVariance(values))
- }
- // SampleSum returns the sum of the slice of int64.
- func SampleSum(values []int64) int64 {
- var sum int64
- for _, v := range values {
- sum += v
- }
- return sum
- }
- // SampleVariance returns the variance of the slice of int64.
- func SampleVariance(values []int64) float64 {
- if 0 == len(values) {
- return 0.0
- }
- m := SampleMean(values)
- var sum float64
- for _, v := range values {
- d := float64(v) - m
- sum += d * d
- }
- return sum / float64(len(values))
- }
- // A uniform sample using Vitter's Algorithm R.
- //
- // <http://www.cs.umd.edu/~samir/498/vitter.pdf>
- type UniformSample struct {
- count int64
- mutex sync.Mutex
- reservoirSize int
- values []int64
- }
- // NewUniformSample constructs a new uniform sample with the given reservoir
- // size.
- func NewUniformSample(reservoirSize int) Sample {
- if UseNilMetrics {
- return NilSample{}
- }
- return &UniformSample{
- reservoirSize: reservoirSize,
- values: make([]int64, 0, reservoirSize),
- }
- }
- // Clear clears all samples.
- func (s *UniformSample) Clear() {
- s.mutex.Lock()
- defer s.mutex.Unlock()
- s.count = 0
- s.values = make([]int64, 0, s.reservoirSize)
- }
- // Count returns the number of samples recorded, which may exceed the
- // reservoir size.
- func (s *UniformSample) Count() int64 {
- s.mutex.Lock()
- defer s.mutex.Unlock()
- return s.count
- }
- // Max returns the maximum value in the sample, which may not be the maximum
- // value ever to be part of the sample.
- func (s *UniformSample) Max() int64 {
- s.mutex.Lock()
- defer s.mutex.Unlock()
- return SampleMax(s.values)
- }
- // Mean returns the mean of the values in the sample.
- func (s *UniformSample) Mean() float64 {
- s.mutex.Lock()
- defer s.mutex.Unlock()
- return SampleMean(s.values)
- }
- // Min returns the minimum value in the sample, which may not be the minimum
- // value ever to be part of the sample.
- func (s *UniformSample) Min() int64 {
- s.mutex.Lock()
- defer s.mutex.Unlock()
- return SampleMin(s.values)
- }
- // Percentile returns an arbitrary percentile of values in the sample.
- func (s *UniformSample) Percentile(p float64) float64 {
- s.mutex.Lock()
- defer s.mutex.Unlock()
- return SamplePercentile(s.values, p)
- }
- // Percentiles returns a slice of arbitrary percentiles of values in the
- // sample.
- func (s *UniformSample) Percentiles(ps []float64) []float64 {
- s.mutex.Lock()
- defer s.mutex.Unlock()
- return SamplePercentiles(s.values, ps)
- }
- // Size returns the size of the sample, which is at most the reservoir size.
- func (s *UniformSample) Size() int {
- s.mutex.Lock()
- defer s.mutex.Unlock()
- return len(s.values)
- }
- // Snapshot returns a read-only copy of the sample.
- func (s *UniformSample) Snapshot() Sample {
- s.mutex.Lock()
- defer s.mutex.Unlock()
- values := make([]int64, len(s.values))
- copy(values, s.values)
- return &SampleSnapshot{
- count: s.count,
- values: values,
- }
- }
- // StdDev returns the standard deviation of the values in the sample.
- func (s *UniformSample) StdDev() float64 {
- s.mutex.Lock()
- defer s.mutex.Unlock()
- return SampleStdDev(s.values)
- }
- // Sum returns the sum of the values in the sample.
- func (s *UniformSample) Sum() int64 {
- s.mutex.Lock()
- defer s.mutex.Unlock()
- return SampleSum(s.values)
- }
- // Update samples a new value.
- func (s *UniformSample) Update(v int64) {
- s.mutex.Lock()
- defer s.mutex.Unlock()
- s.count++
- if len(s.values) < s.reservoirSize {
- s.values = append(s.values, v)
- } else {
- r := rand.Int63n(s.count)
- if r < int64(len(s.values)) {
- s.values[int(r)] = v
- }
- }
- }
- // Values returns a copy of the values in the sample.
- func (s *UniformSample) Values() []int64 {
- s.mutex.Lock()
- defer s.mutex.Unlock()
- values := make([]int64, len(s.values))
- copy(values, s.values)
- return values
- }
- // Variance returns the variance of the values in the sample.
- func (s *UniformSample) Variance() float64 {
- s.mutex.Lock()
- defer s.mutex.Unlock()
- return SampleVariance(s.values)
- }
- // expDecaySample represents an individual sample in a heap.
- type expDecaySample struct {
- k float64
- v int64
- }
- func newExpDecaySampleHeap(reservoirSize int) *expDecaySampleHeap {
- return &expDecaySampleHeap{make([]expDecaySample, 0, reservoirSize)}
- }
- // expDecaySampleHeap is a min-heap of expDecaySamples.
- // The internal implementation is copied from the standard library's container/heap
- type expDecaySampleHeap struct {
- s []expDecaySample
- }
- func (h *expDecaySampleHeap) Clear() {
- h.s = h.s[:0]
- }
- func (h *expDecaySampleHeap) Push(s expDecaySample) {
- n := len(h.s)
- h.s = h.s[0 : n+1]
- h.s[n] = s
- h.up(n)
- }
- func (h *expDecaySampleHeap) Pop() expDecaySample {
- n := len(h.s) - 1
- h.s[0], h.s[n] = h.s[n], h.s[0]
- h.down(0, n)
- n = len(h.s)
- s := h.s[n-1]
- h.s = h.s[0 : n-1]
- return s
- }
- func (h *expDecaySampleHeap) Size() int {
- return len(h.s)
- }
- func (h *expDecaySampleHeap) Values() []expDecaySample {
- return h.s
- }
- func (h *expDecaySampleHeap) up(j int) {
- for {
- i := (j - 1) / 2 // parent
- if i == j || !(h.s[j].k < h.s[i].k) {
- break
- }
- h.s[i], h.s[j] = h.s[j], h.s[i]
- j = i
- }
- }
- func (h *expDecaySampleHeap) down(i, n int) {
- for {
- j1 := 2*i + 1
- if j1 >= n || j1 < 0 { // j1 < 0 after int overflow
- break
- }
- j := j1 // left child
- if j2 := j1 + 1; j2 < n && !(h.s[j1].k < h.s[j2].k) {
- j = j2 // = 2*i + 2 // right child
- }
- if !(h.s[j].k < h.s[i].k) {
- break
- }
- h.s[i], h.s[j] = h.s[j], h.s[i]
- i = j
- }
- }
- type int64Slice []int64
- func (p int64Slice) Len() int { return len(p) }
- func (p int64Slice) Less(i, j int) bool { return p[i] < p[j] }
- func (p int64Slice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
|