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ABSTRACT 

The first step for every machine learning algorithm in a computer vision problem 

is to extract features from the given images. Feature extraction is a critical step in any 

pattern classification system. In order for the pattern recognition process to be 

tractable, it is necessary to convert patterns into features, which are condensed 

representations of the patterns, containing only salient information. Features contain 

the characteristics of a pattern in a comparable form making the pattern classification 

possible. 

Feature extraction can be accomplished manually or automatically. Manual 

feature extraction requires identifying and describing the features that are relevant for 

a given problem and implementing a way to extract those features. In many situations, 

having a good understanding of the background or domain can help make informed 

decisions as to which features could be useful. Over decades of research, engineers 

and scientists have developed feature extraction methods for images. 

The features presented in here are: 

• Textural Features 

• Morphological Features 

• Histogram based Features 

• Multi-scale Features 

• Moments 
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Chapter 1: Textural Features 

1.1 First-order statistics (FOS) or Statistical Features (SF) 

Let 𝑓(𝑥, 𝑦) be a grayscale image. The first order histogram 𝐻𝑖 is defined as  

𝐻𝑖 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑤𝑖𝑡ℎ 𝑔𝑟𝑎𝑦 𝑙𝑒𝑣𝑒𝑙 𝑖 𝑖𝑛𝑠𝑖𝑑𝑒 𝑅𝑂𝐼

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑅𝑂𝐼
, 

which is the empirical probability density function for single pixels. FOS/SF consists of the 

following parameters: 

1. Mean 

𝜇 = 𝑓1 =∑𝑖𝐻𝑖
𝑖

 

2. Standard Deviation=Variance1/2 

𝜎 = 𝑓2 = √∑(𝑖 − 𝜇)2𝐻𝑖
𝜄

 

3. Median 

𝑓3  𝑠. 𝑡.∑𝐻𝑖 = 0.5  

𝑓3

𝑖=0

 

4. Mode 

𝑓4 = argmax
𝑖

 {𝐻𝑖} 

5. Skewness 

f5 =∑(
𝑖 − 𝜇

𝜎
)
3

𝐻𝑖
𝑖

 

6. Kurtosis 

f6 =∑(
𝑖 − 𝜇

𝜎
)
4

𝐻𝑖
𝑖

 

7. Energy 
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𝑓7 =∑𝐻𝑖
2

𝑖

 

8. Entropy 

𝑓8 = −∑𝐻𝑖ln [𝐻𝑖]

𝑖

 

9. Minimal Gray Level 

𝑓9 = min {𝑓(𝑥, 𝑦)} 

10. Maximal Grey Level 

𝑓10 = max {𝑓(𝑥, 𝑦)} 

11. Coefficient of Variation 

𝑓11 =
𝜎

𝜇
 

12. 13. 14. 15. Percentiles (10,25,75,90) 

𝑓𝑛  𝑠. 𝑡.∑𝐻𝑖 = 𝑐  

𝑓𝑛

𝑖=0

 

where (𝑛, 𝑐) = (12,0.1), (13,0.25), (14,0.75), (15,0.9). Note that 50-Percentile is the 

median. 

16. Histogram Width 

𝑓16 = 𝑓15 − 𝑓12 

1.2 Gray Level Co-occurrence Matrix (GLCM) or Spatial Gray Level Dependence 

Matrix (SGLDM) 

The Spatial Gray Level Dependence Matrices (SGLDM) as proposed by Haralick [1] are 

based on the estimation of the second-order joint conditional probability density functions, 

𝑝(𝑖, 𝑗; 𝑑, 𝜃). The 𝑝(𝑖, 𝑗; 𝑑, 𝜃) is the probability that two pixels (𝑥1, 𝑦1) and (𝑥2, 𝑦2) with 

distance 𝑑 in direction specified by the angle 𝜃 have intensities of gray level 𝑖 and gray level 

𝑗. The estimated values for these probability density functions will be denoted by 𝑃(𝑖, 𝑗, ; 𝑑, 𝜃). 

In a 𝑁1 ×𝑁2 image, let 𝐿1 = {0,1, … ,𝑁1 − 1} be the horizontal spatial domain, 𝐿2 =

{0,1, … ,𝑁2 − 1} be the vertical spatial domain, and 𝑓(𝑥, 𝑦) be the image intensity at pixel 
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(𝑥, 𝑦). Formally, for angles quantized at 45𝑜 intervals, the unnormalized probability density 

functions are defined by 

𝑃(𝑖, 𝑗; 𝑑, 0𝜊) = #{((𝑘, 𝑙), (𝑚, 𝑛)) ∈ (𝐿1 × 𝐿2) × (𝐿1 × 𝐿2): 𝑘 − 𝑚 = 0, |𝑙 − 𝑛| = 𝑑, 𝑓(𝑘, 𝑙)

= 𝑖, 𝑓(𝑚, 𝑛) = 𝑗}  

𝑃(𝑖, 𝑗; 𝑑, 45𝜊) = #{((𝑘, 𝑙), (𝑚, 𝑛)) ∈ (𝐿1 × 𝐿2) × (𝐿1 × 𝐿2): (𝑘 −𝑚 = 𝑑, |𝑙 − 𝑛| = 𝑑)

> 𝑜𝑟 (𝑘 −𝑚 = −𝑑, 𝑙 − 𝑛 = 𝑑), 𝑓(𝑘, 𝑙) = 𝑖, 𝑓(𝑚, 𝑛) = 𝑗}   

𝑃(𝑖, 𝑗; 𝑑, 90𝜊) = #{((𝑘, 𝑙), (𝑚, 𝑛)) ∈ (𝐿1 × 𝐿2) × (𝐿1 × 𝐿2): |𝑘 − 𝑚| = 𝑑, 𝑙 − 𝑛 = 0, 𝑓(𝑘, 𝑙)

= 𝑖, 𝑓(𝑚, 𝑛) = 𝑗} 

𝑃(𝑖, 𝑗; 𝑑, 135𝜊) = #{((𝑘, 𝑙), (𝑚, 𝑛)) ∈ (𝐿1 × 𝐿2) × (𝐿1 × 𝐿2): (𝑘 − 𝑚 = 𝑑, |𝑙 − 𝑛| = 𝑑)

> 𝑜𝑟 (𝑘 −𝑚 = −𝑑, 𝑙 − 𝑛 = −𝑑), 𝑓(𝑘, 𝑙) = 𝑖, 𝑓(𝑚, 𝑛) = 𝑗}   

where # denotes the number of elements in the set. 

Table A-1 GLCM notation 

Notation Meaning 

𝑝(𝑖, 𝑗) 
𝑃(𝑖, 𝑗)

∑ ∑ 𝑃(𝑖, 𝑗)𝑁−1
𝑗=0

𝑁−1
𝑖=0

 

𝑁 number of gray levels 

𝑝𝑥(𝑖) ∑ 𝑝(𝑖, 𝑗)
𝑁−1

𝑗=0
 

𝑝𝑦(𝑖) ∑ 𝑝(𝑖, 𝑗)
𝑁−1

𝑖=0
 

𝜇𝑥 ∑ 𝑖𝑝𝑥(𝑖)
𝑁−1

𝑖=0
 

𝜇𝑦 ∑ 𝑗𝑝𝑦(𝑗)
𝑁−1

𝑗=0
 

𝜎𝑥
2 ∑ (𝑖 − 𝜇𝑥)

2𝑝𝑥(𝑖)
𝑁−1

𝑖=0
 

𝜎𝑦
2 ∑ (𝑗 − 𝜇𝑦)

2
𝑝𝑦(𝑗)

𝑁−1

𝑗=0
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𝑝𝑥+𝑦(𝑘) ∑ ∑ 𝑝(𝑖, 𝑗)
𝑁−1

𝑗=0,𝑖+𝑗=𝑘

𝑁−1

𝑖=0
 

𝑝𝑥−𝑦(𝑘) ∑ ∑ 𝑝(𝑖, 𝑗)
𝑁−1

𝑗=0,|𝑖−𝑗|=𝑘

𝑁−1

𝑖=0
 

𝜇𝑥+𝑦 ∑ 𝑘𝑝𝑥+𝑦
2𝑁−1

𝑘=1
(𝑘) 

𝜇𝑥−𝑦 ∑ 𝑘𝑝𝑥−𝑦
𝑁−1

𝑘=0
(𝑘) 

The following texture measures that can be extracted from the spatial gray level 

dependence matrices are proposed in the paper: 

1. Angular Second Moment= Energy2 

𝑓1 =∑ ∑ 𝑝(𝑖, 𝑗)2
𝑁−1

𝑖=0

𝑁−1

𝑖=0
 

2. Contrast 

𝑓2 = ∑ 𝑛2 {∑ ∑𝑝(𝑖, 𝑗)

𝑁−1

𝑗=0

𝑁−1

𝑖=0,|𝑖−𝑗|=𝑛
}

𝑁−1

𝑖=0

 

 

3. Correlation 

𝑓3 =∑ ∑ (
𝑖 − 𝜇𝑥
𝜎𝑥

)
𝑁−1

𝑗=0

𝑁−1

𝑖=0
(
𝑗 − 𝜇𝑦

𝜎𝑦
)𝑝(𝑖, 𝑗) = 

=
∑ ∑ (𝑖𝑗)𝑝(𝑖, 𝑗) − 𝜇𝑥𝜇𝑦

𝑁−1
𝑗=0

𝑁−1
𝑖=0

𝜎𝑥𝜎𝑦
 

4. Sum of Squares: Variance 

𝑓4 =∑ ∑ (𝑖 − 𝜇)2𝑝(𝑖, 𝑗)
𝑁−1

𝑖=0

𝑁−1

𝑖=0
 

5. Inverse Difference Moment (1st formula)/Homogeneity (2nd formula) 

𝑓5 =∑ ∑
𝑝(𝑖, 𝑗)

1 + (𝑖 − 𝑗)2

𝑁−1

𝑖=0

𝑁−1

𝑖=0
 𝑜𝑟∑ ∑

𝑝(𝑖, 𝑗)

1 + |𝑖 − 𝑗|

𝑁−1

𝑖=0

𝑁−1

𝑖=0
  

6. Sum Average 
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𝑓6 = ∑ 𝑘𝑝𝑥+𝑦(𝑘)

2𝑁−1

𝑘=1

 

7. Sum Variance 

𝑓7 = ∑ (𝑖 − 𝜇𝑥−𝑦)
2
𝑝𝑥+𝑦(𝑘)

2𝑁−1

𝑘=1

 

8. Sum Entropy 

𝑓8 = − ∑ 𝑝𝑥+𝑦(𝑘)

2𝑁−1

𝑘=1

𝑙𝑛[𝑝𝑥+𝑦(𝑘)] 

9. Entropy 

𝑓9 = −∑ ∑ 𝑝(𝑖, 𝑗)𝑙𝑜𝑔[𝑝(𝑖, 𝑗)]
𝑁−1

𝑖=0

𝑁−1

𝑖=0
 

10. Difference Variance 

𝑓10 =∑ (𝑘 − 𝜇𝑥−𝑦 )
2
𝑝𝑥−𝑦(𝑘)

𝑁−1

𝑘=0
 

11. Difference Entropy 

𝑓11 = −∑ 𝑝𝑥−𝑦(𝑖𝑘)𝑙𝑜𝑔

𝑁−1

𝑘=0

[𝑝𝑥−𝑦(𝑘)] 

12. 13. Information Measures of Correlation 

𝑓12 =
𝐻𝑋𝑌 −𝐻𝑋𝑌1

max {𝐻𝑋,𝐻𝑌}
 

𝑓13 = (1 − exp(−2.0(𝐻𝑋𝑌2 − 𝐻𝑋𝑌])
1/2 

where 

𝐻𝑋 = −∑ 𝑝𝑥(𝑖)𝑙𝑜𝑔[𝑝𝑥(𝑖)]
𝑁−1

𝑖=0
 

𝐻𝑌 −∑ 𝑝𝑦(𝑖)𝑙𝑜𝑔[𝑝𝑦(𝑖)]
𝑁−1

𝑖=0
 

𝐻𝑋𝑌 −∑ ∑ 𝑝(𝑖, 𝑗)𝑙𝑜𝑔[𝑝(𝑖, 𝑗)]
𝑁−1

𝑖=0

𝑁−1

𝑖=0
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𝐻𝑋𝑌1 = −∑ ∑ 𝑝(𝑖, 𝑗)𝑙𝑜𝑔[𝑝𝑥(𝑖, 𝑗)𝑃𝑝𝑦(𝑖, 𝑗)]
𝑁−1

𝑖=0

𝑁−1

𝑖=0
 

𝐻𝑋𝑌2 = −∑ ∑ 𝑝(𝑖, 𝑗)𝑙𝑜𝑔[𝑝𝑥(𝑖, 𝑗)𝑃𝑝𝑦(𝑖, 𝑗)]
𝑁−1

𝑖=0

𝑁−1

𝑖=0
 

14. Maximal Correlation Coefficient 

𝑓14 = (𝑆𝑒𝑐𝑜𝑛𝑑 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝐸𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑄)
1/2 

where 

𝑄(𝑖, 𝑗) =∑
𝑝(𝑖, 𝑘)𝑝(𝑗, 𝑘)

𝑝𝑥(𝑖)𝑝𝑦(𝑘)

𝑁−1

𝑘=0
 

For a chosen distance 𝑑 we have four angular SGLDM. Hence, we obtain a set of four 

values for each of the preceding measures. The mean and range of each of these measures, 

averaged over the four values, comprise the set of features. 

1.3 Gray Level Difference Statistics (GLDS) 

The Gray Level Difference Statistics (GLDS) algorithm [2] uses first order statistics of 

local property values based on absolute differences between pairs of gray levels or of average 

gray levels in order to extract texture measures. Let 𝑓(𝑥, 𝑦) be the image intensity function and 

for any given displacement 𝛿 = (𝛥𝑥, 𝛥𝑦), let 𝑓𝛿(𝑥, 𝑦) = |𝑓(𝑥, 𝑦) − 𝑓 (𝑥 +  𝛥𝑥, 𝑦 +  𝛥𝑦)|. 

Let 𝑝
𝛿

 be the probability density of 𝑓𝑑(𝑥, 𝑦). If there are 𝑁 gray levels, this has the form of an 

𝑁-dimensional vector whose 𝑖th component is the probability that 𝑓𝑑(𝑥, 𝑦) will have value 𝑖. 

The probability density 𝑝𝛿  can be easily computed by counting the number of times each value 

of 𝑓𝑑(𝑥, 𝑦) occurs, where 𝛥𝑥 and 𝛥𝑦 are integers. In a coarse texture, if the 𝑑 is small, 𝑓𝑑(𝑥, 𝑦) 

will be small, i.e., the values of 𝑝𝛿 should be concentrated near 𝑖 = 0. Conversely, in a fine 

texture, the values of 𝑝𝛿 should be more spread out. Thus, a good way to analyse texture 

coarseness would be to compute, for various magnitudes of 𝛿, so memeasure of the spread of 

values in 𝑝𝛿    away from the origin. Such measures are the following: 

1. Homogeneity 

𝑓1 =∑
𝑝𝛿(𝑖)

𝑖2 + 1𝑖
 

2. Contrast 

𝑓2 =∑ 𝑖2𝑝𝛿(𝑖)
𝑖
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3. Energy/ Angular Second Moment 

𝑓3 =∑ 𝑝𝛿(𝑖)
2

𝑖
 

4. Entropy 

𝑓4 = −∑𝑝𝛿(𝑖)𝑙𝑜𝑔[𝑝𝛿(𝑖)]

𝑖

 

5. Mean 

𝑓5 =∑ 𝑖𝑝𝛿(𝑖)
𝑖

 

1.4 Neighbourhood Gray Tone Difference Matrix (NGTDM) method  

Neighbourhood Gray Tone Difference Matrix (NDTDM) [3] corresponds to visual 

properties of texture. Let 𝑓(𝑥, 𝑦) be the gray tone of a pixel at (𝑥, 𝑦) having gray tone value 𝑖. 

Then the average gray tone over a neighborhood centered at, but excluding (𝑥, 𝑦), can be found 

𝐴𝑖 = 𝐴(𝑥, 𝑦) =
1

𝑊 − 1
∑ ∑ 𝑓(𝑥 + 𝑥′, 𝑦 + 𝑦′)

𝑑

𝑦′=−𝑑

𝑑

𝑥′=−𝑑

 

where (𝑥′, 𝑦′) ≠ (0,0), 𝑑 specifies the neighbourhood size and 𝑊 = (2𝑑 +  1)2. Then the 𝑖th 

entry in the NGTDM is 

𝑠(𝑖) = {
∑|𝑖 − 𝐴𝑖| , 𝑓𝑜𝑟 𝑖 ∈ 𝑁𝑖  𝑖𝑓 𝑁𝑖 ≠ 0 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

where {𝑁𝑖} is the set of all pixels having gray tone 𝑖.  

Table A-2 NGTDM notation 

Notation Meaning 

𝐺ℎ highest gray tone value present in the image 

𝜀 a small number 

𝑝𝑖 =
𝑁𝑖
𝑛2

 
the probability of occurrence of gray tone value i  in a N × N image where 

𝑛 = 𝑁 − 2𝑑 

𝑁𝑔 total number of different gray levels present in the image 

The following textural features are defined as 
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1. Coarseness 

𝑓1 = [𝜀 +∑𝑝𝑖𝑠(𝑖)

𝐺ℎ

𝑖=0

]

−1

 

2. Contrast 

𝑓2 = [
1

𝑁𝑔(𝑁𝑔 − 1)
∑ ∑ 𝑝𝑖𝑝𝑗(𝑖 − 𝑗)

2
𝐺ℎ

𝑗=0

𝐺ℎ

𝑖=0
] [
1

𝑛2
∑ 𝑠(𝑖)

𝐺ℎ

𝑖=0
] 

3. Busyness 

𝑓3 =
[∑ 𝑝𝑖𝑠(𝑖)

𝐺ℎ
𝑖=0 ]

[∑ 𝑖𝑝𝑖 − 𝑗𝑝𝑗
𝐺ℎ
𝑖=0 ]

, 𝑝𝑖 ≠ 0, pj ≠ 0 

4. Complexity 

𝑓4 =∑ ∑ {(|𝑖 − 𝑗|)/(𝑛2(𝑝𝑖 + 𝑝𝑗))}{𝑝𝑖𝑠(𝑖) + 𝑝𝑗𝑠(𝑗)}
𝐺ℎ

𝑗=0

𝐺ℎ

𝑖=0
 

 𝑝𝑖 ≠ 0, 𝑝𝑗 ≠ 0 

5. Strength 

𝑓5 = [∑ ∑ (𝑝𝑖 + 𝑝𝑗)(𝑖 − 𝑗)
2

𝐺ℎ

𝑗=0

𝐺ℎ

𝑖=0
] / [𝜀 +∑ 𝑠(𝑖)

𝐺ℎ

𝑖=0
] , 𝑝𝑖 ≠ 0, pj ≠ 0 

1.5 Statistical Feature Matrix (SFM) 

The Statistical Feature Matrix [4] measures the statistical properties of pixel pairs at 

several distances within an image which are used for statistical analysis. Let 𝑓(𝑥, 𝑦) be the 

image intensity function at point (𝑥, 𝑦), and let 𝛿 = (Δ𝑥, 𝛥𝑦) represent the intersample spacing 

distance vector, where 𝛥𝑥, 𝛥𝑦 are integers. The 𝛿 contrast, 𝛿 covariance, and 𝛿 dissimilarity 

are defined as 

𝐶𝑂𝑁(𝛿) = 𝐸{[|𝑓(𝑥, 𝑦) − 𝑓(𝑥 + 𝛥𝑥, 𝑦 + 𝛥𝑦)]2} 

𝐶𝑂𝑉(𝛿) = 𝐸{[𝑓(𝑥, 𝑦) − 𝜂][𝑓(𝑥 + 𝛥𝑥, 𝑦 + 𝛥𝑦) − 𝜂]} 

𝐷𝑆𝑆(𝛿) = 𝐸{[𝑓(𝑥, 𝑦) − 𝑓(𝑥 + 𝛥𝑥, 𝑦 + 𝛥𝑦)]} 

where 𝐸{⋅} denotes the expectation operation and 𝜂 is the average gray level of the image. A 

statistical feature matrix, (SFM) 𝑀𝑠𝑓, is an (𝐿𝑟 +  1) × (2𝐿𝑐 +  1) matrix whose (𝑖, 𝑗) element 

is the 𝛿 statistical feature of the image, where 𝛿 = (𝑗 − 𝐿𝑐, 𝑖) is an intersample spacing distance 
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vector for 𝑖 = 0,1, . . . , 𝐿𝑟, 𝑗 = 0,1, . . . , 2 ⋅ 𝐿𝑐, and 𝐿𝑟, 𝐿𝑐  are the constants which determine the 

maximum intersample spacing distance. In a similar way, the contrast matrix (𝑀𝑐𝑜𝑛), 

covariance matrix (𝑀𝑐𝑜𝑣), and dissimilarity matrix (𝑀𝑑𝑠𝑠) can be defined as the matrices 

whose (𝑖, 𝑗) elements are the 𝛿 contrast, 𝛿 covariance, and 𝛿 dissimilarity, respectively. Based 

on the SFM, the following texture features can be computed: 

1. Coarseness 

𝑓1 =
𝑐

∑
𝐷𝑆𝑆(𝑖, 𝑗)

𝑛(𝑖,𝑗)∈𝑁𝑟

 

where 𝑐 is a normalized factor, 𝑁𝑟 is the set of displacement vectors defined as 𝑁𝑟 =

{(𝑖, 𝑗): |𝑖|, |𝑗| < 𝑟} and 𝑛 is the number of elements in the set.  

2. Contrast 

𝑓2 = [∑
𝐶𝑂𝑁(𝑖, 𝑗)

4(𝑖,𝑗)∈𝑁𝑟

]

1/2

 

3. Periodicity 

𝑓3 =
�̅�𝑑𝑠𝑠 −𝑀𝑑𝑠𝑠(𝑣𝑎𝑙𝑙𝑒𝑦)

�̅�𝑑𝑠𝑠
 

where �̅�𝑑𝑠𝑠 is the mean of all elements in 𝑀𝑑𝑠𝑠 and 𝑀𝑑𝑠𝑠(𝑣𝑎𝑙𝑙𝑒𝑦) is the deepest valley 

in the matrix 

4. Roughness 

𝑓4 =
𝐷𝑓
(ℎ) + 𝐷𝑓

(𝑣)

2
 

where 𝐷𝑓 is the fractal dimension (see Fractal Dimension Texture Analysis (FDTA)) in 

horizontal and vertical dimensions. 𝐷𝑓 = 3 − 𝐻 and 𝐸{−𝛥𝐼} = 𝑘(𝛿)𝐻 where 𝐻 can be 

estimated from the dissimilarity matrix since the (𝑖, 𝑗 + 𝐿𝑐) element of the matrix is 

𝐸{−𝛥𝐼} with 𝛿 = (𝑗, 𝑖). 

1.6 Law’s Texture Energy (LTE) Method (TEM)  

Law’s texture Energy Measures [5, 6], are derived from three simple vectors of length 3, 

𝐿3 = (1,2,1), 𝐸3 = (−1,0,1), 𝑎𝑛𝑑 𝑆3 = (−1,2, −1), which represent the one-dimensional 

operations of center-weighted local averaging, symmetric first differencing for edge detection, 
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and second differencing for spot detection. If these vectors are convolved with themselves, new 

vectors of length 5, 𝐿5 = (1,4,6,4,1), 𝐸5 = (−1,−2,0,2,1) 𝑎𝑛𝑑 𝑆5 = (−1,0,2,0,−1) are 

obtained. By further self-convolution, new vectors of length 7, 𝐿7 = (1,6,15,20,15,6,1), 𝐸7 =

(−1,−4,−5,0,5,4,1) 𝑎𝑛𝑑 𝑆7 = (−1,−2,1,4,1,1,−2,−1) are obtained, where 𝐿7 again 

performs local averaging, 𝐸7 acts as edge detector, and 𝑆7 acts as spot detector. If the column 

vectors of length 𝑙 are multiplied by row vectors of the same length, Laws 𝑙 × 𝑙 masks are 

obtained. Τhe following combinations are used to obtain the masks (for 𝑙 = 7):  

𝐿𝐿 = 𝐿7𝑇𝐿7 

𝐿𝐸 = 𝐿7𝑇𝐸7 

𝐿𝑆 = 𝐿7𝑇𝑆7 

𝐸𝐿 = 𝐸7𝑇𝐿7 

𝐸𝐸 = 𝐸7𝑇𝐸7 

𝐸𝑆 = 𝐸7𝑇𝑆7 

𝑆𝐿 = 𝑆7𝑇𝐿7   

𝑆𝐸 = 𝑆7𝑇𝐸7 

𝑆𝑆 = 𝑆7𝑇𝑆7 

In order to extract texture features from an image, these masks are convoluted with the 

image, and the statistics (e.g., energy) of the resulting image are used to describe texture. The 

following texture features were extracted: 

1. LL- texture energy from LL kernel 

2. EE- texture energy from EE kernel 

3. SS- texture energy from SS kernel 

4. LE- average texture energy from LE and EL kernels 𝐿𝐸 = (𝐿𝐸 + 𝐸𝐿)/2 

5. ES- average texture energy from ES and SE kernels 𝐸𝑆 = (𝐸𝑆 + 𝑆𝐸)/2 

6. LS- average texture energy from LS and SL kernels 𝐿𝑆 = (𝐿𝑆 + 𝑆𝐿)/2 

The averaging of matched pairs of energy measures gives rotational invariance. 
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1.7 Fractal Dimension Texture Analysis (FDTA)  

Fractal Dimension Texture Analysis (FDTA)  [6] is based on the Fractional Brownian 

Motion (FBM) Model [7]. The FBM model is used to describe the roughness of nature surfaces. 

It regards naturally occurring surfaces as the end result of random walks. Such random walks 

are basic physical processes in our universe. 

One of the most important parameters to represent a fractal surface is the fractal 

dimension. Theoretically, the fractal dimension 𝐷𝑓 is estimated from the equation 

𝐸(𝛥𝐼2) = 𝑐(𝛥𝑟)6−2𝐷𝑓 

where 𝐸(⋅) denotes the expectation operator, 𝛥𝐼 = 𝐼(𝑥2, 𝑦2) − 𝐼(𝑥1, 𝑦1) is the intensity 

variations between two pixels, 𝑐 is a constant, and 𝛥𝑟 = ||(𝑥2, 𝑦2) − (𝑥1, 𝑦1)|| is the spatial 

distance. A simpler method is to estimate the 𝐻 parameter (Hurst coefficient) from the 

relationship 

𝛦(|𝛥𝐼|) = 𝑘(𝛥𝑟)𝐻 

where 𝑘 = 𝐸(|𝛥𝐼|)𝛥𝑟=1 . By applying the 𝑙𝑜𝑔 function the following is obtained 

𝑙𝑜𝑔𝛦(|𝛥𝐼|) = 𝑙𝑜𝑔𝑘 + 𝐻 ⋅ 𝑙𝑜𝑔(𝛥𝑟) 

From the above equation, we can deduce a procedure to estimate the 𝐻 parameter and 

the fractal dimension can be easily computed from the relationship 

𝐷𝑓 = 3 − 𝐻 

A small value of fractal dimension 𝐷𝑓 (large value of parameter 𝐻) means a smooth 

surface, and large 𝐷𝑓 (small 𝐻), a rough surface. 

Given an 𝑀 ×𝑀 image, the intensity difference vector is defined as 

𝐼𝐷𝑉 = [𝑖𝑑(1), 𝑖𝑑(2), … , 𝑖𝑑(𝑠)] 

where 𝑠 is the maximum possible scale, 𝑖𝑑(𝑘) is the average of the absolute intensity difference 

of all pixel pairs with vertical or horizontal distance 𝑘 and 

𝑖𝑑(𝑘) =
∑ ∑ |𝑓(𝑥, 𝑦) − 𝑓(𝑥, 𝑦 + 𝑘)|𝑀−𝑘−1

𝑦=0
𝑀−1
𝑥=0 + ∑ ∑ |𝑓(𝑥, 𝑦) − 𝑓(𝑥 + 𝑘, 𝑦)|𝑀−1

𝑦=0
𝑀−𝑘−1
𝑥=0

2𝑀(𝑀 − 𝑘 − 1)
 

The value of the parameter 𝐻 can be obtained by using least squares linear regression to 

estimate the slope of the curve of 𝑖𝑑(𝑘) versus 𝑘 in log–log scales. 
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If the image is seen under different resolutions, then the multiresolution fractal (𝑀𝐹) 

feature vector is defined as 

𝑀𝐹 = (𝐻𝑚, 𝐻𝑚−1, … , 𝐻𝑚−𝑛+1) 

where 𝑀 = 2𝑚    is the size of the original image, 𝐻𝑘  is the 𝐻 parameter estimated from image 

𝐼𝑘, and 𝑘 is the number of resolutions chosen. The multiresolution fractal (𝑀𝐹) feature vector 

describes also the lacunarity of the image. It can be used for the separation of textures with the 

same fractal dimension 𝐷𝑓  by considering all but the first components of the 𝑀𝐹 vectors. 

1.8 Gray Level Run Length Matrix (GLRLM) 

A gray level run is a set of consecutive, collinear picture points having the same gray 

level value. The length of the run is the number of picture points in the run [8]. For a given 

picture, we can compute a gray level run length matrix for runs having any given direction 𝜃.  

Often the direction 𝜃 is set as 0, 45, 90, 135𝑜. The matrix element 𝑝𝜃(𝑖, 𝑗) specifies the number 

of times that the picture contains a run of length 𝑗, in the given direction, consisting of points 

having gray level 𝑖 (or lying-in gray level range 𝑖). Computation of these matrices is very 

simple. The number of calculations is directly proportional to the number of points in the 

picture. Also, the entire picture need not reside in core. Only two rows of picture values are 

needed at any one time to compute the matrices. To obtain numerical texture measures from 

the matrices, we can compute functions analogous to those used by Haralick for gray level co-

occurrence matrices. 

Table A-3 GLRLM notation 

Notation Meaning 

𝑝𝜃(𝑖, 𝑗) The (𝑖, 𝑗)th entry in the given run length matrix for direction 𝜃 

𝑁𝑔 Number of gray levels in the image 

𝑁𝑟 Number of different run length that occur (so the matrix is 𝑁𝑔 ×𝑁𝑟) 

𝑁𝑧 ∑ ∑ 𝑝𝜃(𝑖, 𝑗)
𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1
 

𝑁𝑝 The number of voxels in the image 

The GLRLM features are the following: 

1. Short Run Emphasis 
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𝑓1 =

∑ ∑
𝑝𝜃(𝑖, 𝑗)
𝑗2

 
𝑁𝑟−1
𝑗=0

𝑁𝑔−1
𝑖=0

𝑁𝑧
 

2. Long Run Emphasis 

𝑓2 =
∑ ∑ 𝑗2𝑝𝜃(𝑖, 𝑗)

𝑁𝑟−1
𝑗=0

𝑁𝑔−1

𝑖=0

𝑁𝑧
 

3. Gray Level Non-Uniformity/Gray Level Distribution 

𝑓3 =
∑ (∑ 𝑝𝜃(𝑖, 𝑗)

𝑁𝑟−1
𝑗=0 )

2𝑁𝑔−1

𝑖=0

𝑁𝑧
 

4. Run Length Non-Uniformity/Run Length Distribution 

𝑓4 =
∑ (∑ 𝑝𝜃(𝑖, 𝑗)

𝑁𝑟−1
𝑖=0 )

2𝑁𝑔−1
𝑗=0

𝑁𝑧
 

5. Run Percentage 

𝑓5 =
𝑁𝑧
𝑁𝑝

 

6. Low Gray Level Run Emphasis 

𝑓6 =
∑ ∑

𝑝𝜃(𝑖, 𝑗)
𝑖2

 
𝑁𝑟−1
𝑗=0

𝑁𝑔−1

𝑖=0

𝑁𝑧
 

7. High Gray Level Run Emphasis 

𝑓7 =
∑ ∑  

𝑁𝑟−1
𝑗=0 𝑝𝜃(𝑖, 𝑗)𝑖

2𝑁𝑔−1

𝑖=0

𝑁𝑧
 

 

8. Short Low Gray Level Emphasis 

𝑓8 =

∑ ∑
𝑝𝜃(𝑖, 𝑗)
𝑖2𝑗2

 
𝑁𝑟−1
𝑗=0

𝑁𝑔−1

𝑖=0

𝑁𝑧
 

9. Short Run High Gray Level Emphasis 

𝑓9 =

∑ ∑
𝑝𝜃(𝑖, 𝑗)
𝑗2

 
𝑁𝑟−1
𝑗=0

𝑁𝑔−1

𝑖=0

𝑁𝑧
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10. Long Run Low Gray Level Emphasis 

𝑓10 =
∑ ∑

𝑝𝜃(𝑖, 𝑗)
𝑖2

 
𝑁𝑟−1
𝑗=0

𝑁𝑔−1

𝑖=0

𝑁𝑧
 

11. Long Run High Gray Level Emphasis 

𝑓11 =
∑ ∑ 𝑝𝜃(𝑖, 𝑗)𝑖

2𝑗2 
𝑁𝑟−1
𝑗=1

𝑁𝑔−1

𝑖=1

𝑁𝑧
 

1.9 Fourier Power Spectrum (FPS) 

The Fourier transform [2, 6] of a picture 𝑓(𝑥, 𝑦) is defined by 

𝐹(𝑢, 𝑣) = ∫ ∫ 𝑒−2𝜋𝑖(𝑢𝑥+𝑣𝑦)𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
∞

−∞

∞

−∞

 

and the Fourier power spectrum, is |𝐹|2 = 𝐹𝐹∗ (where ∗ denontes the complex 

conjugate). 

 It is well known that the radial distribution of values in |𝐹|2 is sensitive to texture 

coarseness in 𝑓. A coarse texture will have high values of |𝐹|2 concentrated near the origin 

while in a fine texture the values of |𝐹|2 will be more spread out. Thus, if one wishes to analyse 

texture coarseness, a set of features that should be useful are the averages of |𝐹|2 taken over a 

ring-shaped regions centred at the origin i.e. features of the form 

𝜑𝑟 = ∫ |𝐹(𝑟, 𝜃)|
2 d𝜃

2𝜋

0

 

for various values of 𝑟, the ring radius. 

 Similarly, it is well known that the angular distribution of values in |𝐹|2 is sensitive to 

the directionality of the texture in 𝑓. A texture with many edges or lines in a given direction 𝜃 

will have high values of |𝐹|2 concentrated around the perpendicular direction 𝜃 + (
𝜋

2
), while 

in a nondirectional texture, |𝐹|2 should also be nondirectional. Thus, a good set of features for 

analysing texture directionality should be the averages of |𝐹|2 taken over a wedge-shaped 

regions entered at the origin, i.e., features of the form 

𝜑𝜃 = ∫|𝐹(𝑟, 𝜃)|
2 d𝜃

∞

0
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for various values of 𝜃, the wedge slope. 

 For 𝑁 ×𝑁 digital pictures, instead off the continuous Fourier transform defined above, 

one uses the discrete transform defined by 

𝐹(𝑢, 𝑣) =
1

𝑁2
∑ 𝑓(𝑖, 𝑗)𝑒−2𝜋√−1(𝑖𝑢+𝑗𝑣)
𝑁−1

𝑖,𝑗=0

 

where 0 ≤ 𝑢 and 𝑣 ≤ 𝑁 − 1. This transofrm, however treats the input picture 𝑓(𝑥, 𝑦) as 

periodic. If, in fact, it is not, the transform is affected by the discontinuities that exist between 

one edge of 𝑓 and the opposite edge. These have the effect of introducing spurious horizontal 

and vertical directionalities, so that high alues are present in |𝐹|2 akibg tge 𝑢 and 𝑣 axes. 

 The standard set of texture features based on a ring-shaped samples of the discrete 

Fourier power spectrum are of the form 

φ𝑟1,𝑟2 = ∑ |𝐹(𝑢, 𝑣)|2

𝑟1≤𝑢2+𝑣2≤𝑟2

 

for various values of the inner and outer ring radii 𝑟1 and 𝑟2. Similarly, the features based on a 

wedge-shaped samples are of the form 

𝜑𝜃1.𝜃2 = ∑ |𝐹(𝑢, 𝑣)|2

𝜃1≤tan−1(
𝑣
𝑢
)≤𝜃2

 

Note that in this last set of features, the “DC value” (𝑢, 𝑣) = (0,0) has been omitted, since it 

is common to all the wedges. 

1.10 Shape parameters 

Shape parameters consists of the following parameters: 

1. X-coordinate maximum length 

2. Y-coordinate maximum length 

3. area 

4. perimeter 

5. perimeter2/area 
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1.11 High Order Spectra (HOS) on Radon Transform 

Radon transform [9, 10] transforms two dimensional images with lines into a domain of 

possible line parameters, where each line in the image will give a peak positioned at the 

corresponding line parameters. Hence, the lines of the images are transformed into the points 

in the Radon domain. An equation of the line can be expressed as: 𝜌 = 𝑥 ⋅ 𝑐𝑜𝑠𝜃 + 𝑦 ⋅ 𝑠𝑖𝑛𝜃, 

where 𝜃 is the small angle and 𝜌 is the small distance to the origin of the coordinate system. 

Given a function 𝑓(𝑥, 𝑦), Radon transform is defined as: 

𝑅(𝜌, 𝜃) = ∫ 𝑓(𝜌 ⋅ 𝑐𝑜𝑠𝜃 − 𝑠 ⋅ 𝑠𝑖𝑛𝜃, 𝜌 ⋅ 𝑠𝑖𝑛𝜃 + 𝑠 ⋅ 𝑐𝑜𝑠𝜃)𝑑𝑠
∞ 

−∞

 

This equation describes the integral along a line 𝑠 through the image, where 𝜌 is the distance 

of the line from the origin and 𝜃 is the angle from the horizontal. So, radon transform converts 

2D signal into the 1D parallel beam projections, at various angles, 𝜃. 

High Order Spectra (HOS) are spectral components of higher moments. The bispectrum 

𝐵(𝑓1, 𝑓2), of a signal is the Fourier transform (FT) of the third order correlation of the signal 

(also known as the third order cumulant function). It is given by 

𝐵(𝑓1, 𝑓2) = 𝐸{𝑋(𝑓1)𝑋(𝑓2)𝑋
∗(𝑓1 + 𝑓2)} 

where 𝑋(𝑓) is the FT of the signal 𝑥[𝑛], 𝐸[⋅] stands for the expectation operation and 𝑋∗(𝑓1 +

𝑓2) denotes the complex conjugate of 𝑋(𝑓1 + 𝑓2). The frequency 𝑓 may be normalized by the 

Nyquist frequency to be between 0 and 1. The bispectrum, is a complex-valued function of two 

frequencies. The bispectrum which is the product of three Fourier coefficients, exhibits 

symmetry and was computed in the non-redundant region. This is termed as Ω, the principal 

domain or the nonredundant region. 

The extracted feature is [11], [12] the entropy 1 (𝑃1) 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦1: 𝑃1 = −∑ 𝑝𝑖 log(𝑝𝑖)
𝑖

 

where 

𝑝𝑖 =
|𝐵(𝑓1, 𝑓2)|

∑ |𝐵(𝑓1, 𝑓2)|𝛺
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1.12 Local Binary Pattern (LPB) 

Local Binary Pattern (LBP), a robust and efficient texture descriptor, was first presented 

by Ojala [13, 14]. The LBP feature vector, in its simplest form, is determined using the 

following method: A circular neighbourhood is considered around a pixel. 𝑃 points are chosen 

on the circumference of the circle with radius 𝑅 such that they are all equidistant from the 

centre pixel. Let 𝑔𝑐 be the gray value of the centre pixel and 𝑔𝑝, 𝑝 = 0, … , 𝑃 − 1, corresponds 

to the gray values of the 𝑃 points. These 𝑃 points are converted into a circular bit-stream of 0s 

and 1s according to whether the gray value of the pixel is less than or greater than the gray 

value of the centre pixel. Ojala et al. (2002) introduced the concept of uniformity in texture 

analysis. The uniform fundamental patterns have a uniform circular structure that contains very 

few spatial transitions 𝑈 (number of spatial bitwise 0/1 transitions). In this work, a rotation 

invariant measure called 𝐿𝐵𝑃𝑃,𝑅 using uniformity measure 𝑈 was calculated. Only patterns 

with 𝑈 ≤ 2 were assigned the LBP code i.e., if the number of bit transitions in the circular bit-

stream is less than or equal to 2, the centre pixel was labelled as uniform. 

𝐿𝐵𝑃𝑃,𝑅(𝑥) = {
∑𝑠(𝑔𝑝 − 𝑔𝑐),   𝑖𝑓 𝑈(𝑥) ≤ 2 

𝑃−1

𝑝=0

𝑃 + 1,                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where 

𝑠(𝑥) = {
𝑥, 𝑥 ≥ 0
0, 𝑥 < 0

 

Multiscale analysis of the image using LBP is done by choosing circles with various radii 

around the centre pixels and, thus, constructing separate LBP image for each scale. Energy and 

entropy of the LBP image, constructed over different scales (𝑅 = 1,2,3 with corresponding 

pixel count 𝑃 = 8,16,24 respectively) were used as feature descriptors. 

1.13 Gray Level Size Zone Matrix (GLSZM) 

Gray Level Size Zone Matrix (GLSZM) [15] quantifies gray level zones in an image. A 

gray level zone is defined as the number of connected voxels that share the same gray level 

intensity. A voxel is considered connected if the distance is 1 according to the infinity norm 

(26-connected region in a 3D, 8-connected region in 2D). In a GLSZM 𝑝(𝑖, 𝑗), the (𝑖, 𝑗)th 

element equals the number of zones with gray level 𝑖 and size 𝑗 appear in image. Contrary to 



PyFeats  18 

GLCM and GLRLM, the GLSZM is rotation independent, with only one matrix calculated for 

all directions in the image. 

Table A-4 GLSZM notation 

Notation Meaning 

𝑁𝑔 Number of discreet intensity values 

𝑁𝑠 Number of discreet zones 

𝑁𝑝 Number of voxels 

𝑁𝑧 = ∑ ∑ 𝑃(𝑖, 𝑗)

𝑁𝑠−1

𝑗=0

𝑁𝑔−1

𝑖=0

 Number of zones in the ROI where 1 ≤ 𝑁𝑧 ≤ 𝑁𝑝 

𝑃(𝑖, 𝑗) Size zone matrix 

𝑝(𝑖, 𝑗) =
𝑃(𝑖, 𝑗)

𝑁𝑧
 Normalized size zone matrix 

The following features can be calculated 

1. Small Zone Emphasis (SZE) or Small Area Emphasis (SAE) 

𝑓1 = ∑ ∑
𝑝(𝑖, 𝑗)

𝑗2

𝑁𝑠−1

𝑗=0

𝑁𝑔−1

𝑖=0

 

2. Large Zone Emphasis (LZE) or Large Area Emphasis (LAE) 

𝑓2 = ∑ ∑ 𝑝(𝑖, 𝑗)𝑗2

𝑁𝑠−1

𝑗=0

𝑁𝑔−1

𝑖=0

 

3. Gray-Level Non-Uniformity (GLN) 

𝑓3 =
∑ (∑ 𝑃(𝑖, 𝑗)

𝑁𝑠−1
𝑗=0 )

𝑁𝑔−1

𝑖=0

2

𝑁𝑧
 𝑜𝑟 

∑ (∑ 𝑃(𝑖, 𝑗)
𝑁𝑠−1
𝑗=0 )

𝑁𝑔−1

𝑖=0

2

𝑁𝑧2
 

4. Zone-Size Non-Uniformity (ZSN)  

𝑓4 =
∑ (∑ 𝑃(𝑖, 𝑗)

𝑁𝑔−1

𝑖=0
)
2

𝑁𝑆−1
𝑗=0

𝑁𝑧
 𝑜𝑟 

∑ (∑ 𝑃(𝑖, 𝑗)
𝑁𝑔−1

𝑖=0
)
2

𝑁𝑆−1
𝑗=0

𝑁𝑧2
 

5. Zone Percentage (ZP) 



PyFeats  19 

𝑓5 =
𝑁𝑧
𝑁𝑝

 

6. Low Gray-Level Zone Emphasis (LGLZE) 

𝑓6 = ∑ ∑
𝑝(𝑖, 𝑗)

𝑖2

𝑁𝑠−1

𝑗=0

𝑁𝑔−1

𝑖=0

 

7. High Gray-Level Zone Emphasis (HGLZE) 

𝑓7 = ∑ ∑ 𝑝(𝑖, 𝑗)𝑖2

𝑁𝑠−1

𝑗=0

𝑁𝑔−1

𝑖=0

 

8. Small Zone Low Gray-Level Emphasis (SZLGLE) or Small Area Low Gray-Level 

Emphasis (SALGLE) 

𝑓8 = ∑ ∑
𝑝(𝑖, 𝑗)

𝑖2𝑗2

𝑁𝑠−1

𝑗=0

𝑁𝑔−1

𝑖=0

 

9. Small Zone High Gray-Level Emphasis (SZHGLE) or Small Area High Gray-Level 

Emphasis (SAHGLE) 

𝑓9 = ∑ ∑
𝑝(𝑖, 𝑗)𝑖2

𝑗2

𝑁𝑠−1

𝑗=0

𝑁𝑔−1

𝑖=0

 

10. Large Zone Low Gray-Level Emphasis (LZLGLE) or Large Area Low Gray-Level 

Emphasis (LALGLE) 

𝑓10 = ∑ ∑
𝑝(𝑖, 𝑗)𝑗2

𝑖2

𝑁𝑠−1

𝑗=0

𝑁𝑔−1

𝑖=0

 

11. Large Zone High Gray-Level Emphasis (LZHGLE) or Large Area High Gray Level 

Emphasis (LAHGLE) 

𝑓11 = ∑ ∑ 𝑝(𝑖, 𝑗)𝑖2𝑗2

𝑁𝑠−1

𝑗=0

𝑁𝑔−1

𝑖=0

 

12. Gray-Level Variance (GLV) 
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𝑓12 = ∑ ∑ 𝑝(𝑖, 𝑗)(𝑖 − 𝜇)2

𝑁𝑠−1

𝑗=0

𝑁𝑔−1

𝑖=0

 

𝜇 = ∑ ∑ 𝑝(𝑖, 𝑗)𝑖

𝑁𝑠−1

𝑗=0

𝑁𝑔−1

𝑖=0

 

13. Zone-Size Variance (ZSV) 

𝑓13 = ∑ ∑ 𝑝(𝑖, 𝑗)(𝑗 − 𝜇)2

𝑁𝑠−1

𝑗=0

𝑁𝑔−1

𝑖=0

 

𝜇 = ∑ ∑ 𝑝(𝑖, 𝑗)𝑗

𝑁𝑠−1

𝑗=0

𝑁𝑔−1

𝑖=0

 

 

14. Zone-Size Entropy (ZSE) 

𝑓14 = − ∑ ∑ 𝑝(𝑖, 𝑗) log2(𝑝(𝑖, 𝑗) + 𝜀)

𝑁𝑠−1

𝑗=0

𝑁𝑔−1

𝑖=0

 

𝜀 is an arbitrarily small positive number 
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Chapter 2: Morphological Features 

2.1 Multilevel Binary Morphological Analysis 

In multilevel binary morphological analysis [16, 17, 18] different plaque components are 

extracted and investigated for their geometric properties. Three binary images are generated by 

thresholding. 

𝐿 = {(𝑥, 𝑦) 𝑠. 𝑡.  𝑓(𝑥, 𝑦) < 25} 

𝑀 = {(𝑥, 𝑦) 𝑠. 𝑡. 25 ≤  𝑓(𝑥, 𝑦) ≤ 50} 

𝐻 = {(𝑥, 𝑦) 𝑠. 𝑡.  𝑓(𝑥, 𝑦) > 50} 

Here, binary image outputs are represented as sets of image coordinates where image 

intensity meets the threshold criteria. Overall, this multilevel decomposition is closely related 

to a three-level quantization of the original image intensity.  In 𝐿, dark image regions 

representing blood, thrombus, lipid, or haemorrhage are extracted. Similarly, in 𝐻, collagen 

and calcified components of the plaque are extracted, while in 𝑀, image components that fall 

between the two are extracted. In the following discussion, the symbol 𝑋 will be used to denote 

any one of the three binary images 𝐿,𝑀,𝐻.  

The structural element, also known as pattern or kernel is defined as the set  

𝐵 = {(−1,0), (0,0), (1,0), (0, −1), (0,1)} ⊆ 𝑍2 

The two basic operators in the area of mathematical morphology are erosion and dilation. 

The basic effect of the erosion on a binary image is to erode the boundaries of regions of 

foreground pixels (i.e., white pixels, typically). Thus, areas of foreground pixels shrink in size, 

and holes within those areas become larger. Erosion is defined as 

𝑋 ⊖𝐵 =⋃𝑋 − 𝑝 = {𝑎: 𝐵 + 𝑎 ⊆ 𝑋

𝑝∈𝐵

} 

The basic effect of the dilation on a binary image is to gradually enlarge the boundaries 

of regions of foreground pixels (i.e., white pixels, typically). Thus areas of foreground pixels 

grow in size while holes within those regions become smaller. Dilation is defined as 

𝑋 ⊕ B =⋃𝑋 + 𝑝 = {𝑎 + 𝑏: 𝑎 ∈ 𝑋 𝑎𝑛𝑑 𝑏 ∈ 𝐵}

𝑝∈𝐵

 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixel.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixel.htm
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The 𝑛-fold expansion of 𝐵 also known as 𝑛-fold Minkowski addition of 𝐵 with itself is 

defined as 

𝑛𝐵 = {
{(0,0)}, 𝑛 = 0

𝐵 ⊕ B⊕…⊕ B⏟            𝑛 > 1
𝑛−1  𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛𝑠

 

Opening and closing are two important operators from mathematical morphology. They 

are both derived from the fundamental operations of erosion and dilation. The basic effect of 

an opening is somewhat like erosion in that it tends to remove some of the foreground (bright) 

pixels from the edges of regions of foreground pixels. However, it is less destructive than 

erosion in general. The effect of the opening is to preserve foreground regions that have a 

similar shape to this structuring element, or that can completely contain the structuring element, 

while eliminating all other regions of foreground pixels. Opening is defined as an erosion 

followed by a dilation: 

𝑋 ∘ 𝐵 = (𝑋⊖ 𝐵)⊕ 𝐵 

Closing is similar in some ways to dilation in that it tends to enlarge the boundaries of 

foreground (bright) regions in an image (and shrink background colour holes in such regions), 

but it is less destructive of the original boundary shape. The effect of the closing is to 

preserve background regions that have a similar shape to this structuring element, or that can 

completely contain the structuring element, while eliminating all other regions of background 

pixels. Closing is defined as a dilation followed by an erosion: 

𝑋• 𝐵 = (𝑋⊕ 𝐵)⊖ B 

Opening and closing are idempotent, i.e., their successive applications do not change 

further the previously transformed result 

𝑋 ∘ 𝐵 = (𝑋 ∘ 𝐵) ∘ 𝐵 

𝑋 ∘ 𝐵 = (𝑋• 𝐵)• 𝐵 

We define as a multiscale opening of 𝑋 by 𝐵 also known as set-processing (SP) opening 

at scale 𝑛 = 0,1,2, .., the opening 

𝑋 ∘ 𝑛𝐵 = (𝑋⊖ nB)⊕ nB 

A dual multiscale filter is the closing of 𝑋 by 𝑛𝐵 or set-processing (SP) closing 

𝑋• 𝑛𝐵 = (𝑋 ⊕ nB)⊖ nB 

The SP opening can be implemented more efficiently as 
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𝑋 ∘ 𝑛𝐵 = [(𝑋 ⊖ 𝐵)⊖ 𝐵⊖…⊖𝐵⏟               
𝑛  𝑡𝑖𝑚𝑒𝑠

] [⊕ 𝐵 ⊕𝐵⊕…⊕𝐵⏟             
𝑛  𝑡𝑖𝑚𝑒𝑠

] 

Table 5 Mathematical Morphology Terminology for Binary Images [17] 

Term Mathematical Equation 

Erosion 𝑋⊖ 𝐵 =⋃𝑋 − 𝑝 = {𝑎: 𝐵 + 𝑎 ⊆ 𝑋

𝑝∈𝐵

} 

Dilation 𝑋⊕ B =⋃𝑋 + 𝑝 = {𝑎 + 𝑏: 𝑎 ∈ 𝑋 𝑎𝑛𝑑 𝑏

𝑝∈𝐵

∈ 𝐵} 

𝑛-fold expansion of 𝐵 
𝑛𝐵 = {

{(0,0)}, 𝑛 = 0
𝐵 ⊕ B⊕…⊕B⏟            𝑛 > 1

𝑛−1  𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛𝑠

 

Opening 𝑋 ∘ 𝐵 = (𝑋 ⊖ 𝐵)⊕𝐵 

Closing 𝑋• 𝐵 = (𝑋 ⊕ 𝐵)⊖ B 

Multiscale set-processing opening  𝑋 ∘ 𝑛𝐵 = (𝑋 ⊖ nB)⊕ nB 

Multiscale set-processing closing  𝑋• 𝑛𝐵 = (𝑋⊕ nB)⊖ nB 

The pattern spectrum of 𝑋 is defined as the function 

𝑃 

The set difference images can be formed as 

𝑑0(𝑋; 𝐵) = 𝑋 − 𝑋 ∘ 𝐵 

𝑑1(𝑋; 𝐵) = 𝑋 ∘ 𝐵 − 𝑋 ∘ 2𝐵 

… 

𝑑𝑛−1(𝑋; 𝐵) = 𝑋 ∘ (𝑛 − 1)𝐵 − 𝑋 ∘ 𝑛𝐵 

The pattern spectrum is defined as the function 

𝑃𝑆𝑋(𝑛, 𝐵) = 𝐴[𝑋 ∘ 𝑛𝐵] − 𝐴[𝑋 ∘ (𝑛 + 1)𝐵] = 𝐴[𝑑𝑛(𝑋; 𝐵)], 𝑛 ≥ 0 

hence the discrete pattern spectrum can be obtained via a forward area difference. A probability 

density function (pdf) measure is considered defined as 

𝑝𝑑𝑓𝑋(𝑛, 𝐵) =
𝐴(𝑃𝑆𝑥(𝑛, 𝐵)

𝐴(𝑋)
, 𝑓𝑜𝑟 𝑛 > 0 
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Given the pdf-measure, the cumulative distribution function (cdf) can also be constructed using 

𝑓(𝑥) = {

0, 𝑛 = 0

∑𝑝𝑑𝑓𝑥(𝑛, 𝐵)

𝑛−1

𝑟=0

, 𝑟 + 1 ≥ 𝑛 > 0
 

2.2 Gray Scale Morphological Analysis 

Similarly, we henceforth represent graytone images by functions; filters whose inputs 

and outputs are functions (multilevel signals) are called function-processing (FP) filters. Let 

𝑓(𝑥, 𝑦) be a finite support graytone image function on 𝑍2, and let 𝑔(𝑥, 𝑦) be a fixed graytone 

pattern. In the context of morphology, 𝑔 is called function structuring element.  

The mathematical definition for grayscale erosion and dilation is identical except in the 

way in which the set of coordinates associated with the input image is derived. The erosion and 

the dilation of 𝑓 by 𝑔 are respectively the functions   

(𝑓 ⊖ 𝑔)(𝑥, 𝑦) = min
(𝑖,𝑗)

{𝑓(𝑥 + 𝑖, 𝑦 + 𝑗) − 𝑔(𝑖, 𝑗)} 

(𝑓 ⊕ 𝑔)(𝑥, 𝑦) = max
(𝑖,𝑗)

{𝑓(𝑥 + 𝑖, 𝑦 + 𝑗) − 𝑔(𝑖, 𝑗)} 

Thus, the opening and the closing of 𝑓 by 𝑔 are respectively the functions 

𝑓 ∘ 𝑔 = (𝑓 ⊖ 𝑔)⊕ 𝑔 

𝑓• 𝑔 = (𝑓 ⊕ 𝑔)⊖ 𝑔 

We define the multiscale function-processing (FP) opening of 𝑓 by 𝑔 at scale 𝑛 =

0,1,2, ….  as the function  

𝑓 ∘ 𝑛𝑔 = (𝑓 ⊖ 𝑛𝑔)⊕ 𝑛𝑔 

Likewise, we define the multiscale function-processing (FP) closing of 𝑓 by 𝑔 as the 

function  

𝑓• 𝑛𝑔 = (𝑓 ⊕ 𝑛𝑔)⊖ 𝑛𝑔 

We can implement multiscale FP opening more efficient as 

𝑓 ∘ 𝑛𝑔 = [(𝑓 ⊖ 𝑔)⊖ 𝑔⊖…⊖𝑔⏟               
𝑛  𝑡𝑖𝑚𝑒𝑠

] [⊕ 𝑔⊕ 𝑔⊕…⊕𝑔⏟             
𝑛  𝑡𝑖𝑚𝑒𝑠

] 

Likewise, for 𝑓• 𝑛𝑔. We define the pattern spectrum of 𝑓 relative to a discrete graytone 

pattern 𝑔 the function 
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Table 6 Mathematical Morphology Terminology for Grayscale Images [17] 

Term Mathematical Equation 

Erosion (𝑓 ⊖ 𝑔)(𝑥, 𝑦) = min
(𝑖,𝑗)

{𝑓(𝑥 + 𝑖, 𝑦 + 𝑗) − 𝑔(𝑖, 𝑗)} 

Dilation (𝑓 ⊕ 𝑔)(𝑥, 𝑦) = max
(𝑖,𝑗)

{𝑓(𝑥 + 𝑖, 𝑦 + 𝑗) − 𝑔(𝑖, 𝑗)} 

𝑛-fold expansion of 𝐵 
𝑛𝐵 = {

{(0,0)}, 𝑛 = 0
𝐵 ⊕ B⊕…⊕B⏟            𝑛 > 1

𝑛−1  𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛𝑠

 

Opening 𝑓 ∘ 𝑔 = (𝑓 ⊖ 𝑔)⊕ 𝑔 

Closing 𝑓• 𝑔 = (𝑓 ⊕ 𝑔)⊖ 𝑔 

Multiscale function-processing 

opening 

𝑓 ∘ 𝑛𝑔 = (𝑓 ⊖ 𝑛𝑔)⊕ 𝑛𝑔 

Multiscale function-processing 

closing 

𝑓• 𝑛𝑔 = (𝑓 ⊕ 𝑛𝑔)⊖ 𝑛𝑔 

𝑃𝑆𝑓(𝑛, 𝑔) = 𝐴[𝑓 ∘ 𝑛𝑔 − 𝑓 ∘ (𝑛 + 1)𝑔], 0 ≤ 𝑛 ≤ 𝑁 

where 𝐴(𝑓) = ∑ 𝑓(𝑥, 𝑦)(𝑥,𝑦)  and (𝑎 − 𝑏)(𝑥) = 𝑎(𝑥) − 𝑏(𝑥) denotes the pointwise algebraic 

difference between functions 𝑎(𝑥) and 𝑏(𝑥). 𝑁 is the maximum positive size 𝑛 such that 𝑓 ⊖

𝑛𝑔 is not all −∞. A probability density function (pdf) measure is defined as 

𝑝𝑑𝑓𝑓(𝑛, 𝐵) =
𝐴(𝑃𝑆𝑥(𝑛, 𝐵)

𝐴(𝑋)
 

Given the pdf-measure, the cumulative distribution function (cdf) can also be constructed 

using 

𝑐𝑑𝑓𝑓(𝑛, 𝐵) = {

0, 𝑛 = 0

∑𝑝𝑑𝑓𝑋(𝑛, 𝐵), 𝑟 + 1 ≥ 𝑛 > 0

𝑛−1

𝑟=0
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Chapter 3: Histogram Features 

3.1 Histogram 

The grey level histogram of the ROI of the plaque image is computed for 32 equal width 

bins and used as a feature set. Histogram despite its simplicity provides a good description of 

the plaque structure. 

3.2 Multi-region Histogram 

Three equidistant ROIs were identified by eroding the plaque image outline by a factor 

based on the plaque size. The histogram was computed for each one of the three regions as 

described above and the 96 values comprised the new feature vector. This feature was 

computed in order to investigate whether the distribution of the plaque structure in equidistant 

ROIs has a diagnostic value and more specifically if the structure of the outer region of the 

plaque is critical whether the plaque will rupture or not. 

3.3 Correlogram 

Correlograms are histograms, which measure not only statistics about the features of the 

image, but also consider the spatial distribution of these features. In this work two correlograms 

were implemented for the ROI of the plaque image: 

• based on the distance of the distribution of the pixels’ gray level values from the 

centre of the image, and 

• based on their angle of distribution. 

For each pixel the distance and the angle from the image centre was calculated and for all pixels 

with the same distance or angle their histograms were computed. In order to make the 

comparison between images of different sizes feasible, the distance correlograms were 

normalized into 32 possible distances from the centre by dividing the calculated distances with 

𝑚𝑎𝑥𝑖𝑚𝑢𝑚_ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒/32. The angle of the correlogram was allowed to vary among 32 

possible values starting from the left middle of the image and moving clockwise. The resulting 

correlograms were matrices 32 × 32 (gray level values over 32 were set to be the white area 

surrounding the region of interest and were not consider for the calculation of the features). 
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Chapter 4: Multi-scale Features 

4.1 Discrete Wavelet Transform (DWT) 

The Discrete Wavelet Transform (DWT) of a signal x[n] is defined as its inner product 

with a family of functions, 𝜙𝑗,𝑘(𝑡) and 𝜓𝑗,𝑘(𝑡), which form an orthonormal set of vectors, a 

combination of which can completely define the signal, and hence, allow its analysis in many 

resolution levels 𝑗. 

φ𝑗,𝑘(𝑡) = 2
𝑗
2 ⋅ 𝜑(2𝑗𝑡 − 𝑘) 

𝜓𝑗,𝑘(𝑡) = 2
𝑗
2 ⋅ 𝜓(2𝑗𝑡 − 𝑘) 

The functions 𝜙𝑗,𝑘(𝑡) and 𝜓𝑗,𝑘(𝑡),  consist of versions of the prototype scaling 𝜑(𝑡), and 

wavelet 𝜓(𝑡) functions, discretized at level 𝑗 and at translation 𝑘. However, for the 

implementation of the DWT, only the coefficients of two half-band filters: a low-pass ℎ(𝑘) 

and a high-pass 𝑔(𝑘) = (−1)𝑘ℎ(1 −  𝑘) filter, are required, which satisfy the following 

conditions: 

φ𝑗+1,0(𝑡) =∑ℎ[𝑘]𝜑𝑗,𝑘
𝑘

 

ψ𝑗+1,0(𝑡) =∑𝑔[𝑘]𝜓𝑗,𝑘
𝑘

 

Hence, the DWT is defined as follows: 

𝐴𝑗+1,𝑛 =∑𝐴𝑗,𝑘 ⋅ ℎ𝑗[𝑘 − 2𝑛]

𝑘

 

𝐷𝑗+1,𝑛 =∑𝐷𝑗,𝑘 ⋅ 𝑔𝑗[𝑘 − 2𝑛]

𝑘

 

where 𝐴𝑗,𝑛 and  𝐷𝑗,𝑛 are known as the approximation and detail coefficients, respectively, at 

level 𝑗 and location 𝑛. The outputs 𝐴𝑗,𝑛 and 𝐷𝑗,𝑛 of the convolution are downsampled by two 

for every level of analysis, where the time resolution is halved, and the frequency resolution is 

doubled.  
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Figure D-1 Schematic diagram of the (a) 2-D DWT, (b) SWT, and (c) WP decomposition schemes for a given 

level of analysis. Note that, for 𝑗 = 0, 𝐴0 is the original image, whereas for 𝑗 = 1, 𝐶0 is omitted from the 

abbreviation of WP sub-images. 𝐻𝑟, 𝐻𝑐, 𝐺𝑟, and 𝐺𝑐 are the low-pass and high-pass filters on the rows and 

columns of each sub-image. The symbols “2↓1” and “1↓2” denote the down-sampling procedure on the columns 

and rows, respectively, which is valid for DWT and WP only [19]. 

For images, i.e., 2-D signals, the 2-D DWT can be used. This consists of a DWT on the 

rows of the image and a DWT on the columns of the resulting image. The result of each DWT 

is followed by down sampling on the columns and rows, respectively. The decomposition of 

the image yields four sub-images for every level. 

Figure D-1 (a) shows a schematic diagram of the 2-D DWT for a given level of analysis. 

Each approximation sub-image (𝐴𝑗) is decomposed into four sub images 

[𝐴𝑗+1, 𝐷ℎ𝑗+1, 𝐷𝑣𝑗+1 and 𝐷𝑑𝑗+1 named approximation, detail-horizontal, detail-vertical, and 

detail-diagonal sub-image respectively in Figure D-1 (a)], according to the previously 

described scheme. Each detail sub-image is the result of a convolution with two half-band 

filters: a low-pass and a high-pass for 𝐷ℎ𝑗  , a highpass and a low-pass for 𝐷𝑣𝑗  , and two high-

pass filters for 𝐷𝑑𝑗 [19]. 
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Figure D-2 DWT decomposition [20] 

4.2 Stationary Wavelet Transform (SWT) 

The 2-D Stationary Wavelet Transform (SWT) is similar to the 2-D DWT, but no down 

sampling is performed. Instead, up sampling of the low-pass and high-pass filters is carried out 

[see Figure D-1 (b)]. The main advantage of SWT over DWT is its shift invariance property. 

However, it is nonorthogonal and highly redundant, and hence, computationally expensive 

[19]. 

4.3 Wavelet Packets (WP) 

The 2-D Wavelet Packets (WP) decomposition is a simple modification of the 2-D DWT, 

which offers a richer space-frequency representation. The first level of analysis is the same as 

that of the 2-D DWT. The second, as well as all subsequent levels of analysis consist of 

decomposing every sub image, rather than only the approximation sub image, into four new 

sub images [see Figure D-1 (c)] [19]. 

4.4 Gabor Transform (GT) 

The Gabor Transform (GT) of an image consists in convolving that image with the Gabor 

function, i.e., a sinusoidal plane wave of a certain frequency and orientation modulated by a 

Gaussian envelope. Frequency and orientation representations of Gabor filters are similar to 

those of the human visual system, rendering them appropriate for texture segmentation and 

classification [19]. 

4.5 Selection of Basis Function (DWT, SWT, WP, GT) 

Careful selection of the basis function is a critical issue in a wavelet-transform-based 

methodology for texture analysis. A number of basis functions from different wavelet families 

were used, including 

• Haar (haar) 
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• Daubechies (db) 

• symlets (sym) 

• coiflets (coif) 

• biorthogonal (bior) 

They have compact support but differ in other properties. The Haar wavelet is orthogonal, 

symmetric, allows for invariant translations, but has poor frequency localization. Daubechies 

wavelets are orthogonal but not symmetric. Symlets and coiflets are orthogonal and near 

symmetric. Biorthogonal wavelets combine many of the properties of the other families. They 

are symmetric with optimum time/frequency localization; however, they are not shift invariant 

[19]. 

4.6 Texture Feature Extraction (DWT, SWT, WP, GT) 

The level of decomposition for each scheme was determined according to the best level 

of decomposition for WP. The best level algorithm based on an entropy criterion among the 

complete sub-images was applied, which indicated three levels of decomposition [19]. 

The detail sub-images contain the textural information in horizontal, vertical, and 

diagonal orientations. The approximation sub-images were not used for texture analysis 

because they are the rough estimate of the original image and capture the intensity variations 

induced by lighting. The total number of sub-images of three levels of decomposition, 

including only the detail images, was 9 in the case of DWT and SWT, 63 in the case of WP 

and 12 in the case of GT. For the GT, the lowest and the highest centre frequencies were set to 

0.05 and 0.4, respectively. The size of the Gabor filter used for texture feature extraction was 

13 × 13. Gabor texture information was obtained at 0,45,90,135𝑜. 

 

Figure D-3 Multiresolution Feature Extraction: Red sub-image is ignored for analysis [20] 
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The texture features that were estimated from each detail sub-image were the mean and 

standard deviation of the absolute value of detail sub-images, both commonly used as texture 

descriptors: 

𝜇𝑗 =
1

𝑁1 × 𝑁2
∑ ∑ |𝐷𝑗(𝑥, 𝑦)|

𝑁2−1

𝑦=0

𝑁1−1

𝑥=0

 

𝜎𝑗 =
1

𝑁1 × 𝑁2
∑ ∑|𝐷𝑗(𝑥, 𝑦) − 𝜇𝑗|

2

𝑁2−1

𝑦=0

𝑁1−1

𝑥=0

 

where 𝐷𝑗(𝑥, 𝑦) are the detail sub-images of dimension 𝑁1 ×𝑁2 in every orientation at level 

𝑗 = 1,2,3. 

4.7 Amplitude Modulation-Frequency Modulation (AM-FM) 

We consider multi-scale Amplitude Modulation – Frequency Modulation (AM-FM) 

representations, under least-square approximations, for images given by 

𝑓(𝑥, 𝑦) =∑ 𝑎𝑛(𝑥, 𝑦) ⋅ 𝑐𝑜𝑠𝜑𝑛(𝑥, 𝑦)
𝑀−1

𝑛=0
 

where 𝑛 = 0,1, … ,𝑀 − 1 denote different scales, 𝑎𝑛 (𝑥, 𝑦) denotes the instantaneous 

amplitude (IA) for the n-th AM component, and 𝜑𝑛(𝑥, 𝑦) denotes the instantaneous phase (IP) 

for the n-th FM component. In addition, the gradient of the phase 𝛻𝜑𝑛(𝑥, 𝑦) defined as 

 𝛻𝜑𝑛(𝑥, 𝑦) =

[
 
 
 
𝜕𝜑𝑛
𝜕𝑥

(𝑥, 𝑦)

𝜕𝜑𝑛
𝜕𝑦

(𝑥, 𝑦)
]
 
 
 

 

represents the instantaneous frequency (IF) for the n-th FM component. 

 Given the input discrete image 𝑓(𝑥, 𝑦), we first apply the Hilbert transform to form a 

2𝐷 extension of the 1𝐷 analytic signal: 𝑓𝐴𝑆(𝑥, 𝑦). 𝑓𝐴𝑆(𝑥, 𝑦) is processed through a collection 

of bandpass filters with the desired scale. Each processing block will produce the instantaneous 

amplitude, the instantaneous phase, and the instantaneous frequencies in both 𝑥 and 𝑦 

directions. Figure below depicts the basic AM-FM demodulation method approach. 

As feature vector, the histogram of the low, medium, high and dc reconstructed images 

is used with 32 bins as a probability density function of the image. 
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Figure D-4 2-D Multi-scale AM-FM demodulation. Dominant AM-FM components are selected over different 

image scales. The bandpass filter selector (upper left) is used to define the bandpass filters that correspond to 

each scale [21] 
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Chapter 5: Other Features 

5.1 Image Moments   

5.1.1 Raw Moments 

In image processing, computer vision and related fields, an image moment is a certain 

particular weighted average (moment) of the image pixels' intensities, or a function of such 

moments, usually chosen to have some attractive property or interpretation. 

For a 2-D continuous function 𝑓(𝑥, 𝑦) the moment (sometimes called "raw moment") of 

order (𝑝 +  𝑞) is defined as 

𝑀𝑝𝑞 = ∫ ∫ 𝑥𝑝 ⋅ 𝑦𝑞 ⋅ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦

∞

−∞

∞

−∞

 

For 𝑝, 𝑞 = 0,1,2, …. For a grayscale image with pixel intensities 𝑓(𝑥, 𝑦), raw image moments 

𝑀𝑖𝑗 are calculated by 

𝑀𝑖𝑗 =∑∑𝑥𝑖 ⋅ 𝑦𝑗 ⋅ 𝑓(𝑥, 𝑦)

𝑦𝑥

 

In some cases, this may be calculated by considering the image as a probability density 

function, i.e., by dividing the above by ∑ ∑ 𝑓(𝑥, 𝑦)𝑦𝑥  

5.1.2 Central Moments 

 Central moments are defined as 

𝜇𝑝𝑞 = ∫ ∫(𝑥 − �̅�)𝑝 ⋅ (𝑦 − �̅�)𝑞 ⋅ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦

∞

−∞

∞

−∞

 

where �̅� =
𝑀10

𝑀00
 and �̅� =

𝑀01

𝑀00
 are the components of centroid. If 𝑓(𝑥, 𝑦) is a digital image, then 

the previous equation becomes 

𝜇𝑝𝑞 =∑∑(𝑥 − �̅�)𝑝 ⋅ (𝑦 − �̅�)𝑞 ⋅ 𝑓(𝑥, 𝑦)

𝑦𝑥

 

It can be shown that: 
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𝜇𝑝𝑞 =∑∑(
𝑝

𝑚
)(
𝑞

𝑛
) (−�̅�)(𝑝−𝑚)(−�̅�)(𝑞−𝑛)𝑀𝑚𝑛

𝑞

𝑛

𝑝

𝑚

 

[22]. 

5.1.3 Moment Invariants 

Moments are well-known for their application in image analysis since they can be used 

to derive invariants with respect to specific transformation classes. 

The term invariant moments is often abused in this context. However, while moment 

invariants are invariants that are formed from moments, the only moments that are invariants 

themselves are the central moments. 

Note that the invariants detailed below are exactly invariant only in the continuous 

domain. In a discrete domain, neither scaling nor rotation are well defined: a discrete image 

transformed in such a way is generally an approximation, and the transformation is not 

reversible. These invariants therefore are only approximately invariant when describing a shape 

in a discrete image [22]. 

Translation Invariants 

The central moments 𝜇𝑖𝑗 of any order are, by construction, invariant with respect to 

translations. 

Scale Invariants 

Invariants 𝜂𝑖𝑗 with respect to both translation and scale can be constructed from central 

moments by dividing through a properly scaled zero-th central moment: 

η𝑖𝑗 =
𝜇𝑖𝑗

𝜇00
(1+

𝑖+𝑗
2 )

 

where 𝑖 + 𝑗 ≥ 2. Note that translational invariance directly follows by only using central 

moments. 

Rotation Invariants 

See Hu’s Moments 5.2 

5.2 Hu’s Moments 

As shown by the work of [23], invariants with respect to translation, scale, and rotation 

can be constructed: 
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𝐼1 = 𝜂20 + 𝜂02 

𝛪2 = (𝜂20 − 𝜂02)
2 − 4𝜂11

2   

𝐼3 = (𝜂30 − 3𝜂12)
2 + (3𝜂21 − 𝜂03)

2 

𝐼4 = (𝜂30 + 𝜂12)
2 + (𝜂21 + 𝜂03)

2 

𝐼5 = (𝜂30 − 3𝜂12)(𝜂30 + 𝜂12)[(𝜂30 + 𝜂12)
2 − 3(𝜂21 + 𝜂03)

2]

+ (3𝜂21 − 𝜂03)(𝜂21 + 𝜂03)[3(𝜂30 + 𝜂12)
2 − (𝜂21 + 𝜂03)

2] 

𝐼6 = (𝜂20 − 𝜂02)[(𝜂30 + 𝜂12)
2 − (𝜂21 + 𝜂03)

2] + 4𝜂11(𝜂30 + 𝜂12)(𝜂21 + 𝜂03) 

𝐼7 = (3𝜂21 − 𝜂03)(𝜂30 + 𝜂12)[(𝜂30 + 𝜂12)
2 − 3(𝜂21 + 𝜂03)

2 ]

− (𝜂30 − 3𝜂12)(𝜂21 + 𝜂03)[3(𝜂03 + 𝜂12)
2 − (𝜂21 + 𝜂03)

2] 

These are well-known as Hu moment invariants. The first one, 𝐼1, is analogous to the moment 

of inertia around the image's centroid, where the pixels' intensities are analogous to physical 

density. The first six, 𝐼1, … , 𝐼6, are reflection symmetric, i.e., they are unchanged if the image 

is changed to a mirror image. The last one, 𝐼7, is reflection antisymmetric (changes sign under 

reflection), which enables it to distinguish mirror images of otherwise identical images [22]. 

5.3 Zernikes’ Moments 

Zernikes’ moment [24] is a kind of orthogonal complex moments and its kernel is a set 

of Zernike complete orthogonal polynomials defined over the interior of the unit disc in the 

polar coordinates space. Let 𝑓(𝑟, 𝜃) be the image intensity function, and the 2-D Zernike 

moment of order 𝑚 with repetition 𝑛 is defined as: 

𝑍𝑚𝑛 =
𝑚 + 1

𝜋
∫ ∫𝑓(𝑟, 𝜃) ⋅ 𝑉𝑚𝑛

∗ (𝑟, 𝜃) ⋅ 𝑟𝑑𝑟𝑑𝜃, 𝑟 ≤ 1

1

0

2𝑝

0

 

where 𝑉𝑚𝑛
∗ (𝑟, 𝜃) is the complex conjugate of Zernike polynomial 𝑉𝑚𝑛(𝑟, 𝜃) and 𝑚 and 𝑛 both 

are integer and the relation between 𝑚 and 𝑛 can be described as: 

𝑉𝑚𝑛(𝑟, 𝜃) = 𝑅𝑚𝑛(𝑟) ⋅ 𝑒
𝑗⋅𝑛⋅𝜃 

where 𝑗 = √−1 and the orthogonal radial polynomial 𝑅𝑚𝑛(𝑟) is given by 

𝑅𝑚𝑛(𝑟) = ∑ (−1)𝑠 ⋅
(𝑚 − 𝑠)!

𝑠! ⋅ (
𝑚 + |𝑛|
2 − 𝑠) ! ⋅ (

𝑚 − |𝑛|
2 − 𝑠) !

⋅ 𝑟𝑚−2⋅𝑠

𝑚−|𝑛|
2

𝑠=0
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From the formula mentioned above and the Euler’s complex number formula, the equations 

listed as follows are available. 

𝑅𝑚(−𝑛)(𝑟) = 𝑅𝑚𝑛(𝑟) 

𝑉𝑚𝑛
∗ (𝑟, 𝜃) = 𝑉𝑚(−𝑛)(𝑟, 𝜃) 

For the computer digital image, let 𝑓(𝑟, 𝜃) be the intensity of the image pixel, and the 2-

D Zernike moment can be represented as: 

𝑍𝑚𝑛 =
𝑚 + 1

𝜋
∑∑𝑓(𝑟, 𝜃) ⋅ 𝑉𝑚𝑛

∗ (𝑟, 𝜃)

𝜃𝑟

 

[25]. 
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