123456789101112131415161718192021222324252627282930313233343536 |
- import os
- import numpy as np
- import onnx
- import onnxruntime as ort
- # The directory of your input and output data
- input_data_dir = 'input_data'
- output_data_dir = 'output_data'
- model_24 = onnx.load('pangu_weather_24.onnx')
- # Set the behavier of onnxruntime
- options = ort.SessionOptions()
- options.enable_cpu_mem_arena=False
- options.enable_mem_pattern = False
- options.enable_mem_reuse = False
- # Increase the number for faster inference and more memory consumption
- options.intra_op_num_threads = 1
- # Set the behavier of cuda provider
- cuda_provider_options = {'arena_extend_strategy':'kSameAsRequested',}
- # Initialize onnxruntime session for Pangu-Weather Models
- ort_session_24 = ort.InferenceSession('pangu_weather_24.onnx', sess_options=options, provider=['CPUExecutionProvider'])
- # Load the upper-air numpy arrays
- input = np.load(os.path.join(input_data_dir, 'input_upper.npy')).astype(np.float32)
- # Load the surface numpy arrays
- input_surface = np.load(os.path.join(input_data_dir, 'input_surface.npy')).astype(np.float32)
- # Run the inference session
- output, output_surface = ort_session_24.run(None, {'input':input, 'input_surface':input_surface})
- # Save the results
- np.save(os.path.join(output_data_dir, 'output_upper'), output)
- np.save(os.path.join(output_data_dir, 'output_surface'), output_surface)
|