import os import numpy as np import onnx import onnxruntime as ort # The directory of your input and output data input_data_dir = 'input_data' output_data_dir = 'output_data' model_24 = onnx.load('pangu_weather_24.onnx') # Set the behavier of onnxruntime options = ort.SessionOptions() options.enable_cpu_mem_arena=False options.enable_mem_pattern = False options.enable_mem_reuse = False # Increase the number for faster inference and more memory consumption options.intra_op_num_threads = 1 # Set the behavier of cuda provider cuda_provider_options = {'arena_extend_strategy':'kSameAsRequested',} # Initialize onnxruntime session for Pangu-Weather Models ort_session_24 = ort.InferenceSession('pangu_weather_24.onnx', sess_options=options, providers=[('CUDAExecutionProvider', cuda_provider_options)]) # Load the upper-air numpy arrays input = np.load(os.path.join(input_data_dir, 'input_upper.npy')).astype(np.float32) # Load the surface numpy arrays input_surface = np.load(os.path.join(input_data_dir, 'input_surface.npy')).astype(np.float32) # Run the inference session output, output_surface = ort_session_24.run(None, {'input':input, 'input_surface':input_surface}) # Save the results np.save(os.path.join(output_data_dir, 'output_upper'), output) np.save(os.path.join(output_data_dir, 'output_surface'), output_surface)