123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170 |
- //////////////////////////////////////////////////////////////////////////////
- //
- // (C) Copyright Ion Gaztanaga 2011-2013. Distributed under the Boost
- // Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- //
- // See http://www.boost.org/libs/container for documentation.
- //
- //////////////////////////////////////////////////////////////////////////////
- #ifndef BOOST_CONTAINER_USES_ALLOCATOR_HPP
- #define BOOST_CONTAINER_USES_ALLOCATOR_HPP
- #include <boost/container/uses_allocator_fwd.hpp>
- #include <boost/container/detail/type_traits.hpp>
- namespace boost {
- namespace container {
- //! <b>Remark</b>: if a specialization constructible_with_allocator_suffix<X>::value is true, indicates that T may be constructed
- //! with an allocator as its last constructor argument. Ideally, all constructors of T (including the
- //! copy and move constructors) should have a variant that accepts a final argument of
- //! allocator_type.
- //!
- //! <b>Requires</b>: if a specialization constructible_with_allocator_suffix<X>::value is true, T must have a nested type,
- //! allocator_type and at least one constructor for which allocator_type is the last
- //! parameter. If not all constructors of T can be called with a final allocator_type argument,
- //! and if T is used in a context where a container must call such a constructor, then the program is
- //! ill-formed.
- //!
- //! <code>
- //! template <class T, class Allocator = allocator<T> >
- //! class Z {
- //! public:
- //! typedef Allocator allocator_type;
- //!
- //! // Default constructor with optional allocator suffix
- //! Z(const allocator_type& a = allocator_type());
- //!
- //! // Copy constructor and allocator-extended copy constructor
- //! Z(const Z& zz);
- //! Z(const Z& zz, const allocator_type& a);
- //! };
- //!
- //! // Specialize trait for class template Z
- //! template <class T, class Allocator = allocator<T> >
- //! struct constructible_with_allocator_suffix<Z<T,Allocator> >
- //! { static const bool value = true; };
- //! </code>
- //!
- //! <b>Note</b>: This trait is a workaround inspired by "N2554: The Scoped A Model (Rev 2)"
- //! (Pablo Halpern, 2008-02-29) to backport the scoped allocator model to C++03, as
- //! in C++03 there is no mechanism to detect if a type can be constructed from arbitrary arguments.
- //! Applications aiming portability with several compilers should always define this trait.
- //!
- //! In conforming C++11 compilers or compilers supporting SFINAE expressions
- //! (when BOOST_NO_SFINAE_EXPR is NOT defined), this trait is ignored and C++11 rules will be used
- //! to detect if a type should be constructed with suffix or prefix allocator arguments.
- template <class T>
- struct constructible_with_allocator_suffix
- { static const bool value = false; };
- //! <b>Remark</b>: if a specialization constructible_with_allocator_prefix<X>::value is true, indicates that T may be constructed
- //! with allocator_arg and T::allocator_type as its first two constructor arguments.
- //! Ideally, all constructors of T (including the copy and move constructors) should have a variant
- //! that accepts these two initial arguments.
- //!
- //! <b>Requires</b>: specialization constructible_with_allocator_prefix<X>::value is true, T must have a nested type,
- //! allocator_type and at least one constructor for which allocator_arg_t is the first
- //! parameter and allocator_type is the second parameter. If not all constructors of T can be
- //! called with these initial arguments, and if T is used in a context where a container must call such
- //! a constructor, then the program is ill-formed.
- //!
- //! <code>
- //! template <class T, class Allocator = allocator<T> >
- //! class Y {
- //! public:
- //! typedef Allocator allocator_type;
- //!
- //! // Default constructor with and allocator-extended default constructor
- //! Y();
- //! Y(allocator_arg_t, const allocator_type& a);
- //!
- //! // Copy constructor and allocator-extended copy constructor
- //! Y(const Y& yy);
- //! Y(allocator_arg_t, const allocator_type& a, const Y& yy);
- //!
- //! // Variadic constructor and allocator-extended variadic constructor
- //! template<class ...Args> Y(Args&& args...);
- //! template<class ...Args>
- //! Y(allocator_arg_t, const allocator_type& a, BOOST_FWD_REF(Args)... args);
- //! };
- //!
- //! // Specialize trait for class template Y
- //! template <class T, class Allocator = allocator<T> >
- //! struct constructible_with_allocator_prefix<Y<T,Allocator> >
- //! { static const bool value = true; };
- //!
- //! </code>
- //!
- //! <b>Note</b>: This trait is a workaround inspired by "N2554: The Scoped Allocator Model (Rev 2)"
- //! (Pablo Halpern, 2008-02-29) to backport the scoped allocator model to C++03, as
- //! in C++03 there is no mechanism to detect if a type can be constructed from arbitrary arguments.
- //! Applications aiming portability with several compilers should always define this trait.
- //!
- //! In conforming C++11 compilers or compilers supporting SFINAE expressions
- //! (when BOOST_NO_SFINAE_EXPR is NOT defined), this trait is ignored and C++11 rules will be used
- //! to detect if a type should be constructed with suffix or prefix allocator arguments.
- template <class T>
- struct constructible_with_allocator_prefix
- { static const bool value = false; };
- #ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
- namespace dtl {
- template<typename T, typename Allocator>
- struct uses_allocator_imp
- {
- // Use SFINAE (Substitution Failure Is Not An Error) to detect the
- // presence of an 'allocator_type' nested type convertilble from Allocator.
- private:
- typedef char yes_type;
- struct no_type{ char dummy[2]; };
- // Match this function if T::allocator_type exists and is
- // implicitly convertible from Allocator
- template <class U>
- static yes_type test(typename U::allocator_type);
- // Match this function if T::allocator_type exists and it's type is `erased_type`.
- template <class U, class V>
- static typename dtl::enable_if
- < dtl::is_same<typename U::allocator_type, erased_type>
- , yes_type
- >::type test(const V&);
- // Match this function if TypeT::allocator_type does not exist or is
- // not convertible from Allocator.
- template <typename U>
- static no_type test(...);
- static Allocator alloc; // Declared but not defined
- public:
- static const bool value = sizeof(test<T>(alloc)) == sizeof(yes_type);
- };
- } //namespace dtl {
- #endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
- //! <b>Remark</b>: Automatically detects whether T has a nested allocator_type that is convertible from
- //! Allocator. Meets the BinaryTypeTrait requirements ([meta.rqmts] 20.4.1). A program may
- //! specialize this type to define uses_allocator<X>::value as true for a T of user-defined type if T does not
- //! have a nested allocator_type but is nonetheless constructible using the specified Allocator where either:
- //! the first argument of a constructor has type allocator_arg_t and the second argument has type Alloc or
- //! the last argument of a constructor has type Alloc.
- //!
- //! <b>Result</b>: uses_allocator<T, Allocator>::value== true if a type T::allocator_type
- //! exists and either is_convertible<Alloc, T::allocator_type>::value != false or T::allocator_type
- //! is an alias `erased_type`. False otherwise.
- template <typename T, typename Allocator>
- struct uses_allocator
- : dtl::uses_allocator_imp<T, Allocator>
- {};
- }} //namespace boost::container
- #endif //BOOST_CONTAINER_USES_ALLOCATOR_HPP
|