1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132 |
- #LyX 1.4.3 created this file. For more info see http://www.lyx.org/
- \lyxformat 245
- \begin_document
- \begin_header
- \textclass article
- \language english
- \inputencoding auto
- \fontscheme pslatex
- \graphics default
- \paperfontsize 12
- \spacing single
- \papersize letterpaper
- \use_geometry true
- \use_amsmath 2
- \cite_engine basic
- \use_bibtopic false
- \paperorientation portrait
- \leftmargin 1in
- \topmargin 0.85in
- \rightmargin 1in
- \bottommargin 0.85in
- \headheight 0in
- \headsep 0in
- \footskip 0in
- \secnumdepth 3
- \tocdepth 3
- \paragraph_separation skip
- \defskip medskip
- \quotes_language english
- \papercolumns 1
- \papersides 1
- \paperpagestyle empty
- \tracking_changes false
- \output_changes true
- \end_header
- \begin_body
- \begin_layout Subsection*
- Reactions with More than Two Components
- \end_layout
- \begin_layout Subsubsection*
- Three-way reactions in MCell
- \end_layout
- \begin_layout Standard
- The rate of reaction of a molecule that can engage in a three-way reaction
- with reactants
- \begin_inset Formula $I$
- \end_inset
- and
- \begin_inset Formula $J$
- \end_inset
- at concentrations
- \begin_inset Formula $\rho_{I}$
- \end_inset
- and
- \begin_inset Formula $\rho_{J}$
- \end_inset
- is
- \begin_inset Formula $\kappa\rho_{I}\rho_{J}$
- \end_inset
- .
- Suppose that a single molecule moves a distance
- \begin_inset Formula $R$
- \end_inset
- while sweeping out an interaction area
- \begin_inset Formula $A$
- \end_inset
- .
- Then the expected number of hits, assuming that the concentration of
- \begin_inset Formula $I$
- \end_inset
- and
- \begin_inset Formula $J$
- \end_inset
- is low, is
- \begin_inset Formula \[
- n_{\mathrm{{hits}}}=R\, A\,\rho_{I}\cdot R\, A\,\rho_{J}\]
- \end_inset
- Thus, the expected number of hits for a molecule with a diffusion length
- constant of
- \begin_inset Formula $\lambda$
- \end_inset
- is
- \begin_inset Formula \[
- n_{\mathrm{{hits}}}=\int_{0}^{\infty}\rho_{I}\rho_{J}A^{2}R^{2}\frac{4\pi R^{2}}{\pi^{3/2}\lambda^{3}}e^{-R^{2}/\lambda^{2}}dR=\frac{3}{2}\rho_{I}\rho_{J}A^{2}\lambda^{2}\]
- \end_inset
- If we let
- \begin_inset Formula $p$
- \end_inset
- be the probability of reaction, then
- \begin_inset Formula \[
- \kappa\rho_{I}\rho_{J}\Delta t=p\cdot n=p\cdot\frac{3}{2}\rho_{I}\rho_{J}A^{2}\lambda^{2}\]
- \end_inset
- Solving for
- \begin_inset Formula $p$
- \end_inset
- gives
- \begin_inset Formula \[
- p=\frac{\kappa}{6D\, A^{2}}\]
- \end_inset
- assuming that
- \begin_inset Formula $\Delta t$
- \end_inset
- is the time step for the moving molecule.
- If we let all three reactants move and react---let us number them 1, 2,
- and 3---then we matching the total rate gives
- \begin_inset Formula \[
- \kappa\rho_{1}\rho_{2}\rho_{3}\Delta t=\frac{3}{2}\rho_{1}\rho_{2}\rho_{3}A^{2}\left(p_{1}\frac{\Delta t}{\Delta t_{1}}\lambda_{1}^{2}+p_{2}\frac{\Delta t}{\Delta t_{2}}\lambda_{2}^{2}+p_{3}\frac{\Delta t}{\Delta t_{3}}\lambda_{3}^{2}\right)\]
- \end_inset
- where in general the individual molecules may move with custom timesteps
-
- \begin_inset Formula $\Delta t_{i}$
- \end_inset
- .
- We let
- \begin_inset Formula $p_{1}=p_{2}=p_{3}=p$
- \end_inset
- to give
- \begin_inset Formula \[
- p=\frac{\kappa}{6\left(D_{1}+D_{2}+D_{3}\right)A^{2}}\]
- \end_inset
- This solution also works for the cases where some of the reactants can't
- move (as
- \begin_inset Formula $D_{i}$
- \end_inset
- will be zero and will drop out of the equation).
- \end_layout
- \begin_layout Standard
- Now suppose that the reaction takes place near a surface such that for a
- fraction
- \begin_inset Formula $a$
- \end_inset
- of the distance, the molecule sweeps out
- \begin_inset Formula $A^{\star}<A$
- \end_inset
- of area instead of
- \begin_inset Formula $A$
- \end_inset
- .
- The expected number of hits is then
- \begin_inset Formula \[
- n_{\mathrm{{hits}}}^{\star}=R\,\rho_{I}\,\left((1-a)A+aA^{\star}\right)\, R\,\rho_{J}\,\left((1-a)A+aA^{\star}\right)\]
- \end_inset
- which we can rewrite as
- \begin_inset Formula \[
- n_{\mathrm{{hits}}}^{\star}=n_{\mathrm{{hits}}}\left((1-a)^{2}+2a(1-a)\frac{A^{\star}}{A}+a^{2}\left(\frac{A^{\star}}{A}\right)^{2}\right)\]
- \end_inset
- where the first term occurs when both hits are in the unconstrained space,
- the second when one target molecule is in the unconstrained space and one
- is in the constrained space, and the third when both targets are in the
- constrained space.
- If we multiply the probability of reaction by the inverse of the fractional
- areas for each target, i.e., by
- \begin_inset Formula $A/A^{\star}$
- \end_inset
- if one target is in the constrained space and
- \begin_inset Formula $\left(A/A^{\star}\right)^{2}$
- \end_inset
- when both are in the constrained space, we then find that the total rate
- of reaction is
- \begin_inset Formula \[
- pn_{\mathrm{{hits}}}\left((1-a)^{2}\cdot1\cdot1+2a(1-a)\frac{A^{\star}}{A}\cdot1\cdot\frac{A}{A^{\star}}+a^{2}\left(\frac{A^{\star}}{A}\right)^{2}\cdot\frac{A}{A^{\star}}\cdot\frac{A}{A^{\star}}\right)=pn_{\mathrm{{hits}}}\]
- \end_inset
- That is, the reaction rate is unchanged, which is exactly what we want.
- Since
- \begin_inset Formula $a$
- \end_inset
- is arbitrary, we can make
- \begin_inset Formula $a$
- \end_inset
- differentially small and thus the result holds for arbitrary restrictions
- of the swept area.
- \end_layout
- \begin_layout Subsubsection*
- 3-way reactions plus a surface in MCell
- \end_layout
- \begin_layout Standard
- If we have three reactants but one of them is on a surface, we can calculate
- the probability of the moving molecule both striking the surface and hitting
- the other reactants.
- If the molecule is a distance
- \begin_inset Formula $h$
- \end_inset
- above the surface, then the probability of hitting the surface is
- \begin_inset Formula \[
- p_{\mathrm{surfhit}}=\frac{1}{2}\int_{h}^{\infty}dr_{z}\cdot\frac{1}{\pi^{1/2}\lambda}e^{-r_{z}^{2}/\lambda^{2}}\]
- \end_inset
- But the molecule also diffuses in the
- \begin_inset Formula $xy$
- \end_inset
- plane, and this determines the length of the collision cylinder.
- If the diffusion distance is
- \begin_inset Formula $r_{xy}$
- \end_inset
- in that plane, then the total diffusion length is
- \begin_inset Formula $r=\sqrt{r_{xy}^{2}+r_{z}^{2}}$
- \end_inset
- and the swept volume is
- \begin_inset Formula $A\sqrt{r_{xy}^{2}+r_{z}^{2}}$
- \end_inset
- .
- For a given
- \begin_inset Formula $r_{z}$
- \end_inset
- , then, the probability of hitting another free molecule is
- \begin_inset Formula \[
- p_{\mathrm{freehit}}=\int_{0}^{\infty}dr_{xy}\cdot\frac{2\pi r_{xy}}{\pi\lambda^{2}}e^{-r_{xy}^{2}/\lambda^{2}}\cdot\left(A\sqrt{r_{xy}^{2}+r_{z}^{2}}\right)\cdot\rho_{1}\]
- \end_inset
- where
- \begin_inset Formula $\rho_{1}$
- \end_inset
- is the density of the other free molecule.
- Thus, the probability of hitting the surface from distance
- \begin_inset Formula $h$
- \end_inset
- and also hitting a diffusing partner is
- \begin_inset Formula \[
- \begin{array}{rcl}
- p_{\mathrm{hit}}(h) & = & \frac{1}{2}\int_{h}^{\infty}dr_{z}\frac{1}{\pi^{1/2}\lambda}e^{-r_{z}^{2}/\lambda^{2}}\int_{0}^{\infty}dr_{xy}\cdot\frac{2\rho_{1}A}{\lambda^{2}}\, r_{xy}\sqrt{r_{xy}^{2}+r_{z}^{2}}\cdot e^{-r_{xy}^{2}/\lambda^{2}}\\
- & = & \frac{\rho_{1}A}{\pi^{1/2}\lambda^{3}}\int_{h}^{\infty}dr_{z}\cdot e^{-r_{z}^{2}/\lambda^{2}}\int_{0}^{\infty}dr_{xy}\cdot r_{xy}\sqrt{r_{xy}^{2}+r_{z}^{2}}e^{-r_{xy}^{2}/\lambda^{2}}\end{array}\]
- \end_inset
- \end_layout
- \begin_layout Standard
- The inner integral evaluates to
- \begin_inset Formula $\frac{\lambda^{2}}{2}r_{z}+\frac{\pi^{1/2}\lambda^{3}}{4}e^{r_{z}^{2}/\lambda^{2}}\mathrm{erfc(\frac{r_{z}}{\lambda})}$
- \end_inset
- , giving
- \end_layout
- \begin_layout Standard
- \begin_inset Formula \[
- p_{\mathrm{hit}}(h)=\frac{\rho_{1}A}{2\pi^{1/2}\lambda}\int_{h}^{\infty}dr_{z}\cdot\left(r_{z}e^{-r_{z}^{2}/\lambda^{2}}+\frac{\pi^{1/2}\lambda}{2}\mathrm{erfc}\left(\frac{r_{z}}{\lambda}\right)\right)\]
- \end_inset
- The outer integral works out to
- \begin_inset Formula $\lambda^{2}e^{-h^{2}/\lambda^{2}}-\frac{\lambda h\pi^{1/2}}{2}\mathrm{erfc}(\frac{h}{\lambda})$
- \end_inset
- :
- \begin_inset Formula \[
- p_{\mathrm{hit}}(h)=\frac{\rho_{1}A}{2\pi^{1/2}}\left(\lambda e^{-h^{2}/\lambda^{2}}-\frac{h\pi^{1/2}}{2}\mathrm{erfc}\left(\frac{h}{\lambda}\right)\right)\]
- \end_inset
- which we can integrate over the entire column above a surface molecule
- of area
- \begin_inset Formula $B$
- \end_inset
- to get the expected number of hits:
- \begin_inset Formula \[
- n_{\mathrm{hit}}=\int_{0}^{\infty}dh\cdot B\cdot\rho_{2}\cdot p_{\mathrm{hit}}(h)=\frac{\rho_{1}A\rho_{2}B}{2\pi^{1/2}}\cdot\frac{3\lambda^{2}\pi^{1/2}}{8}=\frac{3}{16}\lambda^{2}\rho_{1}\rho_{2}AB\]
- \end_inset
- Since
- \begin_inset Formula $n_{\mathrm{hit}}\cdot p_{\mathrm{rx}}$
- \end_inset
- should be equal to the bulk reaction rate
- \begin_inset Formula $\kappa\rho_{1}\rho_{2}\Delta t$
- \end_inset
- , we have
- \begin_inset Formula \[
- p_{\mathrm{rx}}=\frac{4\,\kappa}{3\, D\, A\, B}\]
- \end_inset
- \end_layout
- \begin_layout Standard
- if only species 2 diffuses (note that
- \begin_inset Formula $\lambda^{2}/\Delta t=4D$
- \end_inset
- ).
- If both volume molecules diffuse, the total number of hits in a time
- \begin_inset Formula $\Delta t$
- \end_inset
- is
- \begin_inset Formula \[
- \frac{\Delta t}{\Delta t_{1}}n_{\mathrm{hit},1}+\frac{\Delta t}{\Delta t_{2}}n_{\mathrm{hit},2}=\frac{3}{16}\left(4D_{1}+4D_{2}\right)\rho_{1}\rho_{2}AB\Delta t\]
- \end_inset
- so that
- \begin_inset Formula \[
- p_{\mathrm{rx}}=\frac{4\,\kappa}{3\, A\, B\,(D_{1}+D_{2})}\]
- \end_inset
- If the surface can be hit from either side, the number of hits doubles,
- so the reaction rate should be halved:
- \begin_inset Formula \[
- p_{\mathrm{rx}}^{\prime}=\frac{2\,\kappa}{3\, A\, B\,(D_{1}+D_{2})}\]
- \end_inset
- \end_layout
- \begin_layout Subsubsection*
- Three-way reactions with two surface components
- \end_layout
- \begin_layout Standard
- The standard computation for the number of hits against a single surface
- is
- \begin_inset Formula \[
- n_{\mathrm{hit}}=\frac{\rho_{1}A\lambda}{2\sqrt{\pi}}\]
- \end_inset
- and the probability that a grid element is filled with an appropriate surface
- molecule is
- \begin_inset Formula $\sigma_{i}A$
- \end_inset
- so that if we demand that we strike the first surface molecule directly
- and the second is adjacent, then the productive hit rate is (keeping in
- mind that either of the two surface molecules can be the initial target)
-
- \begin_inset Formula \[
- n_{\mathrm{productive}}=\frac{3\rho_{1}\sigma_{2}\sigma_{3}A^{3}\lambda}{\sqrt{\pi}}\]
- \end_inset
- The desired number of reactions is
- \begin_inset Formula $\kappa\rho_{1}\sigma_{2}\sigma_{3}A\Delta t$
- \end_inset
- (if appropriate units are used for the rate constant), so that
- \begin_inset Formula \[
- p_{\mathrm{rx}}=\kappa\frac{\sqrt{\pi}}{3A^{2}v}\]
- \end_inset
- In contrast, if one of the components is the surface itself (let's assign
- it to
- \begin_inset Formula $\mathrm{\sigma_{3}}$
- \end_inset
- ) and the other is the molecule, the number of productive collisions drops
- by a factor of six (no neighbors, and only one target),
- \begin_inset Formula $\sigma_{3}A=1$
- \end_inset
- in the probability calculation and
- \begin_inset Formula $\sigma_{3}$
- \end_inset
- is typically omitted entirely from the bulk equation, giving
- \begin_inset Formula \[
- p_{\mathrm{rx}}^{\prime}=\kappa\frac{2\sqrt{\pi}}{Av}\]
- \end_inset
- \end_layout
- \begin_layout Subsubsection*
- Three-way reactions with all surface components
- \end_layout
- \begin_layout Standard
- If all components are in the surface, the total number of reactions per
- timestep for a single molecule should be
- \begin_inset Formula $\kappa\sigma_{2}\sigma_{3}\Delta T$
- \end_inset
- and the actual probability of finding the appropriate neighbors is
- \begin_inset Formula $3\sigma_{2}A\cdot2\sigma_{3}A$
- \end_inset
- .
- Thus the reaction probability should be
- \begin_inset Formula \[
- p_{\mathrm{rx}}=\frac{\kappa}{6A^{2}}\Delta t\]
- \end_inset
- \end_layout
- \begin_layout Subsubsection*
- N-way reactions in MCell
- \end_layout
- \begin_layout Standard
- Generalizing to
- \begin_inset Formula $N+1$
- \end_inset
- reactants (one moving and
- \begin_inset Formula $N$
- \end_inset
- targets), where
- \begin_inset Formula $N$
- \end_inset
- is a positive integer, we find that the collision rate is
- \begin_inset Formula \[
- n_{\mathrm{{hits}}}=\int_{0}^{\infty}dR\cdot\prod_{i=1}^{N}\rho_{i}\cdot\left(R\, A\right)^{N}\cdot\frac{4\pi R^{2}}{\pi^{3/2}\lambda^{3}}e^{-R^{2}/\lambda^{2}}=\prod_{i=1}^{N}\rho_{i}\cdot\frac{2\lambda^{N}A^{N}}{\sqrt{\pi}}\Gamma\left(\frac{N+3}{2}\right)\]
- \end_inset
- and the bulk rate is
- \begin_inset Formula $\kappa\cdot\prod_{i=1}^{N}\rho_{i}\cdot\Delta t$
- \end_inset
- , so equating probabilities gives
- \begin_inset Formula \[
- p=\frac{\kappa\sqrt{\pi}\Delta t}{2\lambda^{N}A^{N}\Gamma\left(\frac{N+3}{2}\right)}\]
- \end_inset
- Note that
- \begin_inset Formula $\Gamma(N)=(N-1)!$
- \end_inset
- and
- \begin_inset Formula $\Gamma(N+\frac{1}{2})=\sqrt{\pi}\cdot2^{-2N}\cdot(2N)!/N!=\sqrt{\pi}\cdot\prod_{i=1}^{N}\frac{2i-1}{2}$
- \end_inset
- .
- If we have multiple moving molecules,
- \begin_inset Formula \[
- \kappa\cdot\prod_{i=1}^{N+1}\rho_{i}\cdot\Delta t=\prod_{i=1}^{N+1}\rho_{i}\cdot\frac{2A^{N}}{\sqrt{\pi}}\Gamma\left(\frac{N+3}{2}\right)\cdot\sum_{i=1}^{N+1}p_{i}\frac{\Delta t}{\Delta t_{i}}\lambda_{i}^{N}\]
- \end_inset
- so that, if we set all the
- \begin_inset Formula $p_{i}$
- \end_inset
- to be equal,
- \begin_inset Formula \[
- p=\frac{\kappa\sqrt{\pi}}{2\Gamma\left(\frac{N+3}{2}\right)A^{N}\sum\frac{\lambda_{i}^{N}}{\Delta t_{i}}}\]
- \end_inset
- By induction on the result for pairs of targets in the 3-way case, we also
- see that if a target
- \begin_inset Formula $i$
- \end_inset
- is hit in a restricted space, the reaction probability should be multiplied
- by
- \begin_inset Formula $A/A_{i}^{\star}$
- \end_inset
- .
- \end_layout
- \begin_layout Subsubsection*
- Higher order reactions with single surfaces
- \end_layout
- \begin_layout Standard
- The primary equation for
- \begin_inset Formula $p_{\mathrm{hit}}(h)$
- \end_inset
- remains the same for higher-order reactions except that
- \begin_inset Formula $\rho_{1}Ar$
- \end_inset
- turns into
- \begin_inset Formula $\prod_{i=1}^{N-1}\rho_{i}Ar$
- \end_inset
- (recall that
- \begin_inset Formula $r=\sqrt{r_{xy}^{2}+r_{z}^{2}}$
- \end_inset
- .
- Otherwise the integration is the same.
- The general formulae for such integrals is rather tricky, but the first
- few values for
- \begin_inset Formula $n_{\mathrm{hit}}$
- \end_inset
- are listed here:
- \begin_inset Formula \[
- \begin{array}{rcl}
- n_{\mathrm{hit}}^{(N=2)} & = & \frac{3}{16}\lambda^{2}AB\prod_{i=1}^{N}\rho_{i}\\
- n_{\mathrm{hit}}^{(N=3)} & = & \frac{1}{2\sqrt{\pi}}\lambda^{3}A^{2}B\prod_{i=1}^{N}\rho_{i}\\
- n_{\mathrm{hit}}^{(N=4)} & = & \frac{15}{32}\lambda^{4}A^{3}B\prod_{i=1}^{N}\rho_{i}\\
- n_{\mathrm{hit}}^{(N=5)} & = & \frac{3}{2\sqrt{\pi}}\lambda^{5}A^{4}B\prod_{i=1}^{N}\rho_{i}\\
- n_{\mathrm{hit}}^{(N=6)} & = & \frac{105}{64}\lambda^{5}A^{5}B\prod_{i=1}^{N}\rho_{i}\\
- n_{\mathrm{hit}}^{(N=7)} & = & \frac{6}{\sqrt{\pi}}\lambda^{6}A^{5}B\prod_{i=1}^{N}\rho_{i}\end{array}\]
- \end_inset
- The author conjectures that the formula for even
- \begin_inset Formula $N$
- \end_inset
- is
- \begin_inset Formula \[
- \frac{(N+1)!}{4\cdot2^{3N/2}(N/2)!}\lambda^{N}A^{N-1}B\prod_{i=1}^{N}\rho_{i}\]
- \end_inset
- and for odd
- \begin_inset Formula $N$
- \end_inset
- is
- \begin_inset Formula \[
- \frac{((N+1)/2)!}{4\sqrt{\pi}}\lambda^{N}A^{N-1}B\prod_{i=1}^{N}\rho_{i}\]
- \end_inset
- These have been checked up to
- \begin_inset Formula $N=12$
- \end_inset
- in Maple 10, but these formulae have not been proven.
- \end_layout
- \begin_layout Subsubsection*
- Higher order reactions with multiple surface components
- \end_layout
- \begin_layout Standard
- Each time one adds a molecular surface component, one adds a factor of
- \begin_inset Formula $\frac{1}{A}$
- \end_inset
- the first time (if one is already hitting a surface and a molecule needs
- to be there also),
- \begin_inset Formula $\frac{1}{3A}$
- \end_inset
- the second time,
- \begin_inset Formula $\frac{1}{2A}$
- \end_inset
- the third time, and
- \begin_inset Formula $\frac{1}{A}$
- \end_inset
- the fourth time.
- More than four molecules cannot be found by adjacent search; if this is
- generalized to a wider search, then if the extra partner can be found in
- one of
- \begin_inset Formula $n$
- \end_inset
- places, the reaction probability changes by
- \begin_inset Formula $\frac{1}{nA}$
- \end_inset
- .
- In addition, if there are
- \begin_inset Formula $k$
- \end_inset
- possible surface targets total, the reaction probability should be multiplied
- by an additional
- \begin_inset Formula $\frac{1}{k}$
- \end_inset
- .
- \end_layout
- \begin_layout Subsubsection*
- Converting 3-way reactions to 2-way reactions
- \end_layout
- \begin_layout Standard
- Suppose we have a three-way reaction
- \begin_inset Formula \[
- A_{1}+A_{2}+A_{3}\overset{k}{\longrightarrow}A_{123}\]
- \end_inset
- which we wish to approximate by nine bimolecular reactions:
- \begin_inset Formula \[
- \begin{array}{rcl}
- A_{1}+A_{2} & \overset{k_{12}}{\longrightarrow} & A_{12}\\
- A_{1}+A_{3} & \overset{k_{13}}{\longrightarrow} & A_{13}\\
- A_{2}+A_{3} & \overset{k_{23}}{\longrightarrow} & A_{23}\\
- A_{12} & \overset{k_{-12}}{\longrightarrow} & A_{1}+A_{2}\\
- A_{13} & \overset{k_{-13}}{\longrightarrow} & A_{1}+A_{3}\\
- A_{23} & \overset{k_{-23}}{\longrightarrow} & A_{2}+A_{3}\\
- A_{3}+A_{12} & \overset{k_{3}}{\longrightarrow} & A_{123}\\
- A_{2}+A_{13} & \overset{k_{2}}{\longrightarrow} & A_{123}\\
- A_{1}+A_{23} & \overset{k_{1}}{\longrightarrow} & A_{123}\end{array}\]
- \end_inset
- At quasi-steady state, we want to match rate of entry in to the
- \begin_inset Formula $A_{123}$
- \end_inset
- state:
- \begin_inset Formula \begin{equation}
- kA_{1}A_{2}A_{3}=k_{1}A_{1}A_{23}+k_{2}A_{2}A_{13}+k_{3}A_{3}A_{12}\label{eqn_qss_match}\end{equation}
- \end_inset
- And we also wish to keep the quasi-steady state concentrations of the intermedi
- ates
- \begin_inset Formula $A_{12}$
- \end_inset
- ,
- \begin_inset Formula $A_{13}$
- \end_inset
- , and
- \begin_inset Formula $A_{23}$
- \end_inset
- low compared to the starting materials.
- In general, we will have
- \begin_inset Formula \[
- \frac{d}{dt}A_{hi}=-k_{j}A_{j}A_{hi}-k_{-hi}A_{hi}+k_{hi}A_{h}A_{i}\approx0\]
- \end_inset
- so that
- \begin_inset Formula \[
- A_{hi}\approx\frac{k_{hi}A_{h}A_{i}}{k_{-hi}+k_{j}A_{j}}\]
- \end_inset
- If we want this to be roughly independent of the concentration of
- \begin_inset Formula $A_{j}$
- \end_inset
- then we require
- \begin_inset Formula $k_{-hi}\gg k_{j}A_{j}$
- \end_inset
- and can rewrite this as
- \begin_inset Formula \[
- A_{hi}\approx\frac{k_{hi}}{k_{-hi}}A_{h}A_{i}\left(1-\frac{k_{j}A_{j}}{k_{-hi}}\right)\]
- \end_inset
- If we further require that
- \begin_inset Formula $A_{hi}$
- \end_inset
- be small compared to
- \begin_inset Formula $A_{h}$
- \end_inset
- and
- \begin_inset Formula $A_{i}$
- \end_inset
- , we also require
- \begin_inset Formula $\frac{k_{hi}}{k_{-hi}}\ll\frac{1}{\max(A_{h},A_{i})}$
- \end_inset
- .
- Let
- \begin_inset Formula $A_{+}$
- \end_inset
- be the largest value of any of the
- \begin_inset Formula $A_{i}$
- \end_inset
- during a simulation.
- Furthermore, let us set all
- \begin_inset Formula $k_{j}$
- \end_inset
- to be
- \begin_inset Formula $k^{\star}$
- \end_inset
- , all
- \begin_inset Formula $k_{hi}$
- \end_inset
- to be
- \begin_inset Formula $k^{\dagger}$
- \end_inset
- and all
- \begin_inset Formula $k_{-hi}$
- \end_inset
- to be
- \begin_inset Formula $k^{\ddagger}$
- \end_inset
- .
- Then our constraints require that
- \begin_inset Formula $k^{\ddagger}\gg k^{\star}A_{+}$
- \end_inset
- and
- \begin_inset Formula $k^{\dagger}\ll k^{\ddagger}\frac{1}{A_{+}}$
- \end_inset
- ; taken together,
- \begin_inset Formula $k^{\dagger}\approx k^{\star}$
- \end_inset
- is a valid solution, so we may as well make the two the same,
- \begin_inset Formula $k^{\prime}$
- \end_inset
- .
- Thus, we have a forward reaction rate
- \begin_inset Formula $k^{\prime}$
- \end_inset
- for all binding reactions and a backward reaction rate
- \begin_inset Formula $k^{\ddagger}$
- \end_inset
- for dissociation of the intermediates.
- \end_layout
- \begin_layout Standard
- Thus, equation (
- \begin_inset LatexCommand \ref{eqn_qss_match}
- \end_inset
- ) becomes
- \begin_inset Formula \[
- kA_{1}A_{2}A_{3}\approx k^{\prime}A_{1}\frac{k^{\prime}}{k^{\ddagger}}A_{2}A_{3}+k^{\prime}A_{2}\frac{k^{\prime}}{k^{\ddagger}}A_{1}A_{3}+k^{\prime}A_{3}\frac{k^{\prime}}{k^{\ddagger}}A_{1}A_{2}=3\frac{{k^{\prime}}^{2}}{k^{\ddagger}}A_{1}A_{2}A_{3}\]
- \end_inset
- with a first-order error term
- \begin_inset Formula \[
- -\frac{{k^{\prime}}^{3}}{{k^{\ddagger}}^{2}}A_{1}A_{2}A_{3}\left(A_{1}+A_{2}+A_{3}\right)\]
- \end_inset
- If we let
- \begin_inset Formula $k^{\ddagger}=\alpha k^{\prime}$
- \end_inset
- , where
- \begin_inset Formula $\alpha\gg A_{+}$
- \end_inset
- , we then have
- \begin_inset Formula \[
- k\approx\frac{3}{\alpha}k^{\prime}-\frac{A_{1}+A_{2}+A_{3}}{\alpha^{2}}k^{\prime}\]
- \end_inset
- Thus,
- \begin_inset Formula \[
- k_{1}=k_{2}=k_{3}=k_{12}=k_{13}=k_{23}=k^{\prime}\approx\frac{1}{3}\alpha k\]
- \end_inset
- and
- \begin_inset Formula \[
- k_{-12}=k_{-13}=k_{-23}=k^{\ddagger}\approx\frac{1}{3}\alpha^{2}k\]
- \end_inset
- Note that our fractional error is approximately
- \begin_inset Formula $1/\alpha$
- \end_inset
- , i.e.
- if we let
- \begin_inset Formula $\alpha=100\, A_{+}$
- \end_inset
- our fractional error would be under 1%.
- \end_layout
- \begin_layout Subsubsection*
- Notes on Units
- \end_layout
- \begin_layout Standard
- When rates are measured for bimolecular reactions between a volume molecule
- and a surface molecule, one can lay down a surface with known (or measurable)
- area
- \begin_inset Formula $\mathcal{A}$
- \end_inset
- in a solution of volume
- \begin_inset Formula $\mathcal{V}$
- \end_inset
- .
- You then add
- \begin_inset Formula $n_{1}$
- \end_inset
- volume molecules (concentration
- \begin_inset Formula $\rho_{1}=n_{1}/\mathcal{V}$
- \end_inset
- in units of #/unit volume) and
- \begin_inset Formula $n_{2}$
- \end_inset
- surface molecules (at density
- \begin_inset Formula $\sigma_{2}=n_{2}/\mathcal{A}$
- \end_inset
- ) and measure
- \begin_inset Formula \[
- \frac{d\rho_{1}}{dt}=-k_{\rho}\rho_{1}\sigma_{2}\]
- \end_inset
- \end_layout
- \begin_layout Standard
- where
- \begin_inset Formula $k_{\rho}$
- \end_inset
- is the rate constant with units of
- \begin_inset Formula $\mathrm{area}\cdot\#^{-1}\cdot\mathrm{s}^{-1}$
- \end_inset
- .
- One can equally well write this as
- \begin_inset Formula \[
- \frac{d\sigma_{2}}{dt}=-k_{\sigma}\rho_{1}\sigma_{2}\]
- \end_inset
- where
- \begin_inset Formula $k_{\sigma}$
- \end_inset
- has units of
- \begin_inset Formula $\mathrm{volume}\cdot\#^{-1}\cdot\mathrm{s}^{-1}$
- \end_inset
- .
- Of course, the numbers of molecules reacting are the same, so that
- \begin_inset Formula \[
- -k_{\sigma}\mathcal{V}^{-1}n_{1}n_{2}=\mathcal{A}\frac{d\sigma_{2}}{dt}=\frac{dn_{2}}{dt}=\frac{dn_{1}}{dt}=\mathcal{V}\frac{d\rho_{1}}{dt}=-k_{\rho}\mathcal{A}^{-1}n_{1}n_{2}\]
- \end_inset
- We can now let
- \begin_inset Formula $k_{n}=k_{\sigma}\mathcal{V}^{-1}=k_{\rho}\mathcal{A}^{-1}$
- \end_inset
- and write
- \begin_inset Formula \[
- \frac{dn_{\star}}{dt}=-k_{n}n_{1}n_{2}\]
- \end_inset
- \end_layout
- \begin_layout Standard
- But one can also define
- \begin_inset Formula $\rho_{2}=\sigma_{2}\cdot\frac{\mathcal{A}}{\mathcal{V}}$
- \end_inset
- , that is, treat the surface molecule as if it were a volume molecule, and
- then
- \begin_inset Formula \[
- \frac{d\rho_{\star}}{dt}=\frac{dn_{\diamond}}{dt}\mathcal{V}^{-1}=-k_{n}\rho_{1}\rho_{2}\mathcal{V}^{-1}=-k_{\star}\rho_{1}\rho_{2}\]
- \end_inset
- where
- \begin_inset Formula $k_{\star}=k_{n}\cdot\mathcal{V}^{-1}$
- \end_inset
- ; here
- \begin_inset Formula $\star$
- \end_inset
- stands for one of
- \begin_inset Formula $1$
- \end_inset
- or
- \begin_inset Formula $2$
- \end_inset
- , while
- \begin_inset Formula $\diamond$
- \end_inset
- stands for the other.
- \end_layout
- \begin_layout Standard
- If one is performing a stochastic calculation, the total number of hits
- on all surface molecules in a short time
- \begin_inset Formula $\Delta t$
- \end_inset
- is
- \begin_inset Formula \[
- n_{2}\frac{\rho_{1}A\lambda}{2\sqrt{\pi}}\Delta t\]
- \end_inset
- where
- \begin_inset Formula $A$
- \end_inset
- is the area of a single surface molecule.
- From the well-mixed continuum approximation, the probability should be
- scaled such that
- \begin_inset Formula \[
- -p_{\mathrm{rx}}\cdot n_{2}\frac{\rho_{1}A\lambda}{2\sqrt{\pi}}=\frac{dn_{\diamond}}{dt}\Delta t=\mathcal{V}\frac{d\rho_{\star}}{dt}\Delta t=-k_{\star}n_{2}\rho_{1}\Delta t\]
- \end_inset
- so that
- \begin_inset Formula $p_{\mathrm{rx}}=k_{\star}\cdot2\sqrt{\pi}/Av$
- \end_inset
- where
- \begin_inset Formula $v=\lambda/\Delta t$
- \end_inset
- .
- Thus, we can use the volumetric rate constant
- \begin_inset Formula $k_{\star}$
- \end_inset
- where we need only convert from molarity to #/unit volume---we need not
- know the original volume of the test sample or the area of membrane in
- it, as long as the value of
- \begin_inset Formula $k_{\mathrm{\star}}$
- \end_inset
- is reported.
- Conveniently, one can measure
- \begin_inset Formula $k_{\star}$
- \end_inset
- without even knowing the area of the membrane.
- \end_layout
- \begin_layout Standard
- However, if we add a second surface component at density
- \begin_inset Formula $\sigma_{3}$
- \end_inset
- , the above is no longer true since the reaction rate is no longer proportional
- to the numbers of each molecule.
- In particular,
- \begin_inset Formula \[
- \frac{d\rho_{1}}{dt}=-k_{\rho}\rho_{1}\sigma_{2}\sigma_{3}\]
- \end_inset
-
- \begin_inset Formula \[
- \frac{d\sigma_{i\in\{2,3\}}}{dt}=-k_{\sigma}\rho_{1}\sigma_{2}\sigma_{3}\]
- \end_inset
- defines the reactions, but now
- \begin_inset Formula \[
- \frac{dn_{1}}{dt}=\mathcal{V}\frac{d\rho_{1}}{dt}=-k_{\rho}n_{1}n_{2}n_{3}\mathcal{A}^{-2}\]
- \end_inset
-
- \begin_inset Formula \[
- \frac{dn_{i}}{dt}=\mathcal{A}\frac{d\sigma_{i}}{dt}=-k_{\sigma}n_{1}n_{2}n_{3}\mathcal{A}^{-1}\mathcal{V}^{-1}\]
- \end_inset
- so that
- \begin_inset Formula $k_{n}=k_{\sigma}\mathcal{A}^{-1}\mathcal{V}^{-1}=k_{\rho}\mathcal{A}^{-2}$
- \end_inset
- .
- If we try the same trick of converting
- \begin_inset Formula $\sigma_{2}$
- \end_inset
- and
- \begin_inset Formula $\sigma_{3}$
- \end_inset
- to volumes, we find that -k
- \begin_inset Formula \[
- -k_{\star}\rho_{1}\rho_{2}\rho_{3}=\frac{d\rho_{\star}}{dt}=\mathcal{V}^{-1}\frac{dn_{\star}}{dt}=-k_{n}n_{1}n_{2}n_{3}\mathcal{V}^{-1}=-k_{n}\rho_{1}\rho_{2}\rho_{3}\mathcal{V}^{2}\]
- \end_inset
- so that
- \begin_inset Formula $k_{n}=k_{\star}\mathcal{V}^{-2}$
- \end_inset
- .
- When we try to match total numbers of molecules reacting, we find that
- there are
- \begin_inset Formula \[
- p_{\mathrm{rx}}\frac{3\rho_{1}\sigma_{2}\sigma_{3}A^{3}\lambda}{\sqrt{\pi}}\cdot\frac{\mathcal{A}}{A}\]
- \end_inset
- total reactions in time
- \begin_inset Formula $\Delta t$
- \end_inset
- in a stochastic treatment (the factor of
- \begin_inset Formula $\mathcal{A}/A$
- \end_inset
- arises from the difference between the per-receptor area and the total
- surface area), and
- \begin_inset Formula \[
- \frac{dn_{\star}}{dt}\Delta t=\mathcal{V}\frac{d\rho_{\star}}{dt}\Delta t=-k_{\star}\rho_{1}\rho_{2}\rho_{3}\mathcal{V}\Delta t=-k_{\star}\rho_{1}\sigma_{2}\sigma_{3}\frac{\mathcal{A}^{2}}{\mathcal{V}}\Delta t\]
- \end_inset
- from the deterministic continuum equations.
- Equating the two (with the correct sign) gives
- \begin_inset Formula \[
- p_{rx}=k_{\star}\frac{\sqrt{\pi}}{3A^{2}v}\cdot\frac{\mathcal{A}}{\mathcal{V}}\]
- \end_inset
- This is problematic because the probability of reaction now depends on
- the surface to volume ratio
- \begin_inset Formula $\mathcal{A}/\mathcal{V}$
- \end_inset
- ; what we need is
- \begin_inset Formula $k_{\star}\frac{\mathcal{A}}{\mathcal{V}}$
- \end_inset
- .
- Fortunately,
- \begin_inset Formula $k_{\sigma}=k_{n}\mathcal{A}\mathcal{V}=k_{\star}\frac{\mathcal{A}}{\mathcal{V}}$
- \end_inset
- .
- Thus, the only appropriate rate constant for three-molecule reactions is
-
- \begin_inset Formula $k_{\sigma}$
- \end_inset
- , which has units of
- \begin_inset Formula $\mathrm{volume}\cdot\mathrm{area}\cdot\#^{-2}\cdot s^{-1}$
- \end_inset
- .
- \end_layout
- \end_body
- \end_document
|