suggested_3way_rxn.lyx 27 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132
  1. #LyX 1.4.3 created this file. For more info see http://www.lyx.org/
  2. \lyxformat 245
  3. \begin_document
  4. \begin_header
  5. \textclass article
  6. \language english
  7. \inputencoding auto
  8. \fontscheme pslatex
  9. \graphics default
  10. \paperfontsize 12
  11. \spacing single
  12. \papersize letterpaper
  13. \use_geometry true
  14. \use_amsmath 2
  15. \cite_engine basic
  16. \use_bibtopic false
  17. \paperorientation portrait
  18. \leftmargin 1in
  19. \topmargin 0.85in
  20. \rightmargin 1in
  21. \bottommargin 0.85in
  22. \headheight 0in
  23. \headsep 0in
  24. \footskip 0in
  25. \secnumdepth 3
  26. \tocdepth 3
  27. \paragraph_separation skip
  28. \defskip medskip
  29. \quotes_language english
  30. \papercolumns 1
  31. \papersides 1
  32. \paperpagestyle empty
  33. \tracking_changes false
  34. \output_changes true
  35. \end_header
  36. \begin_body
  37. \begin_layout Subsection*
  38. Reactions with More than Two Components
  39. \end_layout
  40. \begin_layout Subsubsection*
  41. Three-way reactions in MCell
  42. \end_layout
  43. \begin_layout Standard
  44. The rate of reaction of a molecule that can engage in a three-way reaction
  45. with reactants
  46. \begin_inset Formula $I$
  47. \end_inset
  48. and
  49. \begin_inset Formula $J$
  50. \end_inset
  51. at concentrations
  52. \begin_inset Formula $\rho_{I}$
  53. \end_inset
  54. and
  55. \begin_inset Formula $\rho_{J}$
  56. \end_inset
  57. is
  58. \begin_inset Formula $\kappa\rho_{I}\rho_{J}$
  59. \end_inset
  60. .
  61. Suppose that a single molecule moves a distance
  62. \begin_inset Formula $R$
  63. \end_inset
  64. while sweeping out an interaction area
  65. \begin_inset Formula $A$
  66. \end_inset
  67. .
  68. Then the expected number of hits, assuming that the concentration of
  69. \begin_inset Formula $I$
  70. \end_inset
  71. and
  72. \begin_inset Formula $J$
  73. \end_inset
  74. is low, is
  75. \begin_inset Formula \[
  76. n_{\mathrm{{hits}}}=R\, A\,\rho_{I}\cdot R\, A\,\rho_{J}\]
  77. \end_inset
  78. Thus, the expected number of hits for a molecule with a diffusion length
  79. constant of
  80. \begin_inset Formula $\lambda$
  81. \end_inset
  82. is
  83. \begin_inset Formula \[
  84. n_{\mathrm{{hits}}}=\int_{0}^{\infty}\rho_{I}\rho_{J}A^{2}R^{2}\frac{4\pi R^{2}}{\pi^{3/2}\lambda^{3}}e^{-R^{2}/\lambda^{2}}dR=\frac{3}{2}\rho_{I}\rho_{J}A^{2}\lambda^{2}\]
  85. \end_inset
  86. If we let
  87. \begin_inset Formula $p$
  88. \end_inset
  89. be the probability of reaction, then
  90. \begin_inset Formula \[
  91. \kappa\rho_{I}\rho_{J}\Delta t=p\cdot n=p\cdot\frac{3}{2}\rho_{I}\rho_{J}A^{2}\lambda^{2}\]
  92. \end_inset
  93. Solving for
  94. \begin_inset Formula $p$
  95. \end_inset
  96. gives
  97. \begin_inset Formula \[
  98. p=\frac{\kappa}{6D\, A^{2}}\]
  99. \end_inset
  100. assuming that
  101. \begin_inset Formula $\Delta t$
  102. \end_inset
  103. is the time step for the moving molecule.
  104. If we let all three reactants move and react---let us number them 1, 2,
  105. and 3---then we matching the total rate gives
  106. \begin_inset Formula \[
  107. \kappa\rho_{1}\rho_{2}\rho_{3}\Delta t=\frac{3}{2}\rho_{1}\rho_{2}\rho_{3}A^{2}\left(p_{1}\frac{\Delta t}{\Delta t_{1}}\lambda_{1}^{2}+p_{2}\frac{\Delta t}{\Delta t_{2}}\lambda_{2}^{2}+p_{3}\frac{\Delta t}{\Delta t_{3}}\lambda_{3}^{2}\right)\]
  108. \end_inset
  109. where in general the individual molecules may move with custom timesteps
  110. \begin_inset Formula $\Delta t_{i}$
  111. \end_inset
  112. .
  113. We let
  114. \begin_inset Formula $p_{1}=p_{2}=p_{3}=p$
  115. \end_inset
  116. to give
  117. \begin_inset Formula \[
  118. p=\frac{\kappa}{6\left(D_{1}+D_{2}+D_{3}\right)A^{2}}\]
  119. \end_inset
  120. This solution also works for the cases where some of the reactants can't
  121. move (as
  122. \begin_inset Formula $D_{i}$
  123. \end_inset
  124. will be zero and will drop out of the equation).
  125. \end_layout
  126. \begin_layout Standard
  127. Now suppose that the reaction takes place near a surface such that for a
  128. fraction
  129. \begin_inset Formula $a$
  130. \end_inset
  131. of the distance, the molecule sweeps out
  132. \begin_inset Formula $A^{\star}<A$
  133. \end_inset
  134. of area instead of
  135. \begin_inset Formula $A$
  136. \end_inset
  137. .
  138. The expected number of hits is then
  139. \begin_inset Formula \[
  140. n_{\mathrm{{hits}}}^{\star}=R\,\rho_{I}\,\left((1-a)A+aA^{\star}\right)\, R\,\rho_{J}\,\left((1-a)A+aA^{\star}\right)\]
  141. \end_inset
  142. which we can rewrite as
  143. \begin_inset Formula \[
  144. n_{\mathrm{{hits}}}^{\star}=n_{\mathrm{{hits}}}\left((1-a)^{2}+2a(1-a)\frac{A^{\star}}{A}+a^{2}\left(\frac{A^{\star}}{A}\right)^{2}\right)\]
  145. \end_inset
  146. where the first term occurs when both hits are in the unconstrained space,
  147. the second when one target molecule is in the unconstrained space and one
  148. is in the constrained space, and the third when both targets are in the
  149. constrained space.
  150. If we multiply the probability of reaction by the inverse of the fractional
  151. areas for each target, i.e., by
  152. \begin_inset Formula $A/A^{\star}$
  153. \end_inset
  154. if one target is in the constrained space and
  155. \begin_inset Formula $\left(A/A^{\star}\right)^{2}$
  156. \end_inset
  157. when both are in the constrained space, we then find that the total rate
  158. of reaction is
  159. \begin_inset Formula \[
  160. pn_{\mathrm{{hits}}}\left((1-a)^{2}\cdot1\cdot1+2a(1-a)\frac{A^{\star}}{A}\cdot1\cdot\frac{A}{A^{\star}}+a^{2}\left(\frac{A^{\star}}{A}\right)^{2}\cdot\frac{A}{A^{\star}}\cdot\frac{A}{A^{\star}}\right)=pn_{\mathrm{{hits}}}\]
  161. \end_inset
  162. That is, the reaction rate is unchanged, which is exactly what we want.
  163. Since
  164. \begin_inset Formula $a$
  165. \end_inset
  166. is arbitrary, we can make
  167. \begin_inset Formula $a$
  168. \end_inset
  169. differentially small and thus the result holds for arbitrary restrictions
  170. of the swept area.
  171. \end_layout
  172. \begin_layout Subsubsection*
  173. 3-way reactions plus a surface in MCell
  174. \end_layout
  175. \begin_layout Standard
  176. If we have three reactants but one of them is on a surface, we can calculate
  177. the probability of the moving molecule both striking the surface and hitting
  178. the other reactants.
  179. If the molecule is a distance
  180. \begin_inset Formula $h$
  181. \end_inset
  182. above the surface, then the probability of hitting the surface is
  183. \begin_inset Formula \[
  184. p_{\mathrm{surfhit}}=\frac{1}{2}\int_{h}^{\infty}dr_{z}\cdot\frac{1}{\pi^{1/2}\lambda}e^{-r_{z}^{2}/\lambda^{2}}\]
  185. \end_inset
  186. But the molecule also diffuses in the
  187. \begin_inset Formula $xy$
  188. \end_inset
  189. plane, and this determines the length of the collision cylinder.
  190. If the diffusion distance is
  191. \begin_inset Formula $r_{xy}$
  192. \end_inset
  193. in that plane, then the total diffusion length is
  194. \begin_inset Formula $r=\sqrt{r_{xy}^{2}+r_{z}^{2}}$
  195. \end_inset
  196. and the swept volume is
  197. \begin_inset Formula $A\sqrt{r_{xy}^{2}+r_{z}^{2}}$
  198. \end_inset
  199. .
  200. For a given
  201. \begin_inset Formula $r_{z}$
  202. \end_inset
  203. , then, the probability of hitting another free molecule is
  204. \begin_inset Formula \[
  205. p_{\mathrm{freehit}}=\int_{0}^{\infty}dr_{xy}\cdot\frac{2\pi r_{xy}}{\pi\lambda^{2}}e^{-r_{xy}^{2}/\lambda^{2}}\cdot\left(A\sqrt{r_{xy}^{2}+r_{z}^{2}}\right)\cdot\rho_{1}\]
  206. \end_inset
  207. where
  208. \begin_inset Formula $\rho_{1}$
  209. \end_inset
  210. is the density of the other free molecule.
  211. Thus, the probability of hitting the surface from distance
  212. \begin_inset Formula $h$
  213. \end_inset
  214. and also hitting a diffusing partner is
  215. \begin_inset Formula \[
  216. \begin{array}{rcl}
  217. p_{\mathrm{hit}}(h) & = & \frac{1}{2}\int_{h}^{\infty}dr_{z}\frac{1}{\pi^{1/2}\lambda}e^{-r_{z}^{2}/\lambda^{2}}\int_{0}^{\infty}dr_{xy}\cdot\frac{2\rho_{1}A}{\lambda^{2}}\, r_{xy}\sqrt{r_{xy}^{2}+r_{z}^{2}}\cdot e^{-r_{xy}^{2}/\lambda^{2}}\\
  218. & = & \frac{\rho_{1}A}{\pi^{1/2}\lambda^{3}}\int_{h}^{\infty}dr_{z}\cdot e^{-r_{z}^{2}/\lambda^{2}}\int_{0}^{\infty}dr_{xy}\cdot r_{xy}\sqrt{r_{xy}^{2}+r_{z}^{2}}e^{-r_{xy}^{2}/\lambda^{2}}\end{array}\]
  219. \end_inset
  220. \end_layout
  221. \begin_layout Standard
  222. The inner integral evaluates to
  223. \begin_inset Formula $\frac{\lambda^{2}}{2}r_{z}+\frac{\pi^{1/2}\lambda^{3}}{4}e^{r_{z}^{2}/\lambda^{2}}\mathrm{erfc(\frac{r_{z}}{\lambda})}$
  224. \end_inset
  225. , giving
  226. \end_layout
  227. \begin_layout Standard
  228. \begin_inset Formula \[
  229. p_{\mathrm{hit}}(h)=\frac{\rho_{1}A}{2\pi^{1/2}\lambda}\int_{h}^{\infty}dr_{z}\cdot\left(r_{z}e^{-r_{z}^{2}/\lambda^{2}}+\frac{\pi^{1/2}\lambda}{2}\mathrm{erfc}\left(\frac{r_{z}}{\lambda}\right)\right)\]
  230. \end_inset
  231. The outer integral works out to
  232. \begin_inset Formula $\lambda^{2}e^{-h^{2}/\lambda^{2}}-\frac{\lambda h\pi^{1/2}}{2}\mathrm{erfc}(\frac{h}{\lambda})$
  233. \end_inset
  234. :
  235. \begin_inset Formula \[
  236. p_{\mathrm{hit}}(h)=\frac{\rho_{1}A}{2\pi^{1/2}}\left(\lambda e^{-h^{2}/\lambda^{2}}-\frac{h\pi^{1/2}}{2}\mathrm{erfc}\left(\frac{h}{\lambda}\right)\right)\]
  237. \end_inset
  238. which we can integrate over the entire column above a surface molecule
  239. of area
  240. \begin_inset Formula $B$
  241. \end_inset
  242. to get the expected number of hits:
  243. \begin_inset Formula \[
  244. n_{\mathrm{hit}}=\int_{0}^{\infty}dh\cdot B\cdot\rho_{2}\cdot p_{\mathrm{hit}}(h)=\frac{\rho_{1}A\rho_{2}B}{2\pi^{1/2}}\cdot\frac{3\lambda^{2}\pi^{1/2}}{8}=\frac{3}{16}\lambda^{2}\rho_{1}\rho_{2}AB\]
  245. \end_inset
  246. Since
  247. \begin_inset Formula $n_{\mathrm{hit}}\cdot p_{\mathrm{rx}}$
  248. \end_inset
  249. should be equal to the bulk reaction rate
  250. \begin_inset Formula $\kappa\rho_{1}\rho_{2}\Delta t$
  251. \end_inset
  252. , we have
  253. \begin_inset Formula \[
  254. p_{\mathrm{rx}}=\frac{4\,\kappa}{3\, D\, A\, B}\]
  255. \end_inset
  256. \end_layout
  257. \begin_layout Standard
  258. if only species 2 diffuses (note that
  259. \begin_inset Formula $\lambda^{2}/\Delta t=4D$
  260. \end_inset
  261. ).
  262. If both volume molecules diffuse, the total number of hits in a time
  263. \begin_inset Formula $\Delta t$
  264. \end_inset
  265. is
  266. \begin_inset Formula \[
  267. \frac{\Delta t}{\Delta t_{1}}n_{\mathrm{hit},1}+\frac{\Delta t}{\Delta t_{2}}n_{\mathrm{hit},2}=\frac{3}{16}\left(4D_{1}+4D_{2}\right)\rho_{1}\rho_{2}AB\Delta t\]
  268. \end_inset
  269. so that
  270. \begin_inset Formula \[
  271. p_{\mathrm{rx}}=\frac{4\,\kappa}{3\, A\, B\,(D_{1}+D_{2})}\]
  272. \end_inset
  273. If the surface can be hit from either side, the number of hits doubles,
  274. so the reaction rate should be halved:
  275. \begin_inset Formula \[
  276. p_{\mathrm{rx}}^{\prime}=\frac{2\,\kappa}{3\, A\, B\,(D_{1}+D_{2})}\]
  277. \end_inset
  278. \end_layout
  279. \begin_layout Subsubsection*
  280. Three-way reactions with two surface components
  281. \end_layout
  282. \begin_layout Standard
  283. The standard computation for the number of hits against a single surface
  284. is
  285. \begin_inset Formula \[
  286. n_{\mathrm{hit}}=\frac{\rho_{1}A\lambda}{2\sqrt{\pi}}\]
  287. \end_inset
  288. and the probability that a grid element is filled with an appropriate surface
  289. molecule is
  290. \begin_inset Formula $\sigma_{i}A$
  291. \end_inset
  292. so that if we demand that we strike the first surface molecule directly
  293. and the second is adjacent, then the productive hit rate is (keeping in
  294. mind that either of the two surface molecules can be the initial target)
  295. \begin_inset Formula \[
  296. n_{\mathrm{productive}}=\frac{3\rho_{1}\sigma_{2}\sigma_{3}A^{3}\lambda}{\sqrt{\pi}}\]
  297. \end_inset
  298. The desired number of reactions is
  299. \begin_inset Formula $\kappa\rho_{1}\sigma_{2}\sigma_{3}A\Delta t$
  300. \end_inset
  301. (if appropriate units are used for the rate constant), so that
  302. \begin_inset Formula \[
  303. p_{\mathrm{rx}}=\kappa\frac{\sqrt{\pi}}{3A^{2}v}\]
  304. \end_inset
  305. In contrast, if one of the components is the surface itself (let's assign
  306. it to
  307. \begin_inset Formula $\mathrm{\sigma_{3}}$
  308. \end_inset
  309. ) and the other is the molecule, the number of productive collisions drops
  310. by a factor of six (no neighbors, and only one target),
  311. \begin_inset Formula $\sigma_{3}A=1$
  312. \end_inset
  313. in the probability calculation and
  314. \begin_inset Formula $\sigma_{3}$
  315. \end_inset
  316. is typically omitted entirely from the bulk equation, giving
  317. \begin_inset Formula \[
  318. p_{\mathrm{rx}}^{\prime}=\kappa\frac{2\sqrt{\pi}}{Av}\]
  319. \end_inset
  320. \end_layout
  321. \begin_layout Subsubsection*
  322. Three-way reactions with all surface components
  323. \end_layout
  324. \begin_layout Standard
  325. If all components are in the surface, the total number of reactions per
  326. timestep for a single molecule should be
  327. \begin_inset Formula $\kappa\sigma_{2}\sigma_{3}\Delta T$
  328. \end_inset
  329. and the actual probability of finding the appropriate neighbors is
  330. \begin_inset Formula $3\sigma_{2}A\cdot2\sigma_{3}A$
  331. \end_inset
  332. .
  333. Thus the reaction probability should be
  334. \begin_inset Formula \[
  335. p_{\mathrm{rx}}=\frac{\kappa}{6A^{2}}\Delta t\]
  336. \end_inset
  337. \end_layout
  338. \begin_layout Subsubsection*
  339. N-way reactions in MCell
  340. \end_layout
  341. \begin_layout Standard
  342. Generalizing to
  343. \begin_inset Formula $N+1$
  344. \end_inset
  345. reactants (one moving and
  346. \begin_inset Formula $N$
  347. \end_inset
  348. targets), where
  349. \begin_inset Formula $N$
  350. \end_inset
  351. is a positive integer, we find that the collision rate is
  352. \begin_inset Formula \[
  353. n_{\mathrm{{hits}}}=\int_{0}^{\infty}dR\cdot\prod_{i=1}^{N}\rho_{i}\cdot\left(R\, A\right)^{N}\cdot\frac{4\pi R^{2}}{\pi^{3/2}\lambda^{3}}e^{-R^{2}/\lambda^{2}}=\prod_{i=1}^{N}\rho_{i}\cdot\frac{2\lambda^{N}A^{N}}{\sqrt{\pi}}\Gamma\left(\frac{N+3}{2}\right)\]
  354. \end_inset
  355. and the bulk rate is
  356. \begin_inset Formula $\kappa\cdot\prod_{i=1}^{N}\rho_{i}\cdot\Delta t$
  357. \end_inset
  358. , so equating probabilities gives
  359. \begin_inset Formula \[
  360. p=\frac{\kappa\sqrt{\pi}\Delta t}{2\lambda^{N}A^{N}\Gamma\left(\frac{N+3}{2}\right)}\]
  361. \end_inset
  362. Note that
  363. \begin_inset Formula $\Gamma(N)=(N-1)!$
  364. \end_inset
  365. and
  366. \begin_inset Formula $\Gamma(N+\frac{1}{2})=\sqrt{\pi}\cdot2^{-2N}\cdot(2N)!/N!=\sqrt{\pi}\cdot\prod_{i=1}^{N}\frac{2i-1}{2}$
  367. \end_inset
  368. .
  369. If we have multiple moving molecules,
  370. \begin_inset Formula \[
  371. \kappa\cdot\prod_{i=1}^{N+1}\rho_{i}\cdot\Delta t=\prod_{i=1}^{N+1}\rho_{i}\cdot\frac{2A^{N}}{\sqrt{\pi}}\Gamma\left(\frac{N+3}{2}\right)\cdot\sum_{i=1}^{N+1}p_{i}\frac{\Delta t}{\Delta t_{i}}\lambda_{i}^{N}\]
  372. \end_inset
  373. so that, if we set all the
  374. \begin_inset Formula $p_{i}$
  375. \end_inset
  376. to be equal,
  377. \begin_inset Formula \[
  378. p=\frac{\kappa\sqrt{\pi}}{2\Gamma\left(\frac{N+3}{2}\right)A^{N}\sum\frac{\lambda_{i}^{N}}{\Delta t_{i}}}\]
  379. \end_inset
  380. By induction on the result for pairs of targets in the 3-way case, we also
  381. see that if a target
  382. \begin_inset Formula $i$
  383. \end_inset
  384. is hit in a restricted space, the reaction probability should be multiplied
  385. by
  386. \begin_inset Formula $A/A_{i}^{\star}$
  387. \end_inset
  388. .
  389. \end_layout
  390. \begin_layout Subsubsection*
  391. Higher order reactions with single surfaces
  392. \end_layout
  393. \begin_layout Standard
  394. The primary equation for
  395. \begin_inset Formula $p_{\mathrm{hit}}(h)$
  396. \end_inset
  397. remains the same for higher-order reactions except that
  398. \begin_inset Formula $\rho_{1}Ar$
  399. \end_inset
  400. turns into
  401. \begin_inset Formula $\prod_{i=1}^{N-1}\rho_{i}Ar$
  402. \end_inset
  403. (recall that
  404. \begin_inset Formula $r=\sqrt{r_{xy}^{2}+r_{z}^{2}}$
  405. \end_inset
  406. .
  407. Otherwise the integration is the same.
  408. The general formulae for such integrals is rather tricky, but the first
  409. few values for
  410. \begin_inset Formula $n_{\mathrm{hit}}$
  411. \end_inset
  412. are listed here:
  413. \begin_inset Formula \[
  414. \begin{array}{rcl}
  415. n_{\mathrm{hit}}^{(N=2)} & = & \frac{3}{16}\lambda^{2}AB\prod_{i=1}^{N}\rho_{i}\\
  416. n_{\mathrm{hit}}^{(N=3)} & = & \frac{1}{2\sqrt{\pi}}\lambda^{3}A^{2}B\prod_{i=1}^{N}\rho_{i}\\
  417. n_{\mathrm{hit}}^{(N=4)} & = & \frac{15}{32}\lambda^{4}A^{3}B\prod_{i=1}^{N}\rho_{i}\\
  418. n_{\mathrm{hit}}^{(N=5)} & = & \frac{3}{2\sqrt{\pi}}\lambda^{5}A^{4}B\prod_{i=1}^{N}\rho_{i}\\
  419. n_{\mathrm{hit}}^{(N=6)} & = & \frac{105}{64}\lambda^{5}A^{5}B\prod_{i=1}^{N}\rho_{i}\\
  420. n_{\mathrm{hit}}^{(N=7)} & = & \frac{6}{\sqrt{\pi}}\lambda^{6}A^{5}B\prod_{i=1}^{N}\rho_{i}\end{array}\]
  421. \end_inset
  422. The author conjectures that the formula for even
  423. \begin_inset Formula $N$
  424. \end_inset
  425. is
  426. \begin_inset Formula \[
  427. \frac{(N+1)!}{4\cdot2^{3N/2}(N/2)!}\lambda^{N}A^{N-1}B\prod_{i=1}^{N}\rho_{i}\]
  428. \end_inset
  429. and for odd
  430. \begin_inset Formula $N$
  431. \end_inset
  432. is
  433. \begin_inset Formula \[
  434. \frac{((N+1)/2)!}{4\sqrt{\pi}}\lambda^{N}A^{N-1}B\prod_{i=1}^{N}\rho_{i}\]
  435. \end_inset
  436. These have been checked up to
  437. \begin_inset Formula $N=12$
  438. \end_inset
  439. in Maple 10, but these formulae have not been proven.
  440. \end_layout
  441. \begin_layout Subsubsection*
  442. Higher order reactions with multiple surface components
  443. \end_layout
  444. \begin_layout Standard
  445. Each time one adds a molecular surface component, one adds a factor of
  446. \begin_inset Formula $\frac{1}{A}$
  447. \end_inset
  448. the first time (if one is already hitting a surface and a molecule needs
  449. to be there also),
  450. \begin_inset Formula $\frac{1}{3A}$
  451. \end_inset
  452. the second time,
  453. \begin_inset Formula $\frac{1}{2A}$
  454. \end_inset
  455. the third time, and
  456. \begin_inset Formula $\frac{1}{A}$
  457. \end_inset
  458. the fourth time.
  459. More than four molecules cannot be found by adjacent search; if this is
  460. generalized to a wider search, then if the extra partner can be found in
  461. one of
  462. \begin_inset Formula $n$
  463. \end_inset
  464. places, the reaction probability changes by
  465. \begin_inset Formula $\frac{1}{nA}$
  466. \end_inset
  467. .
  468. In addition, if there are
  469. \begin_inset Formula $k$
  470. \end_inset
  471. possible surface targets total, the reaction probability should be multiplied
  472. by an additional
  473. \begin_inset Formula $\frac{1}{k}$
  474. \end_inset
  475. .
  476. \end_layout
  477. \begin_layout Subsubsection*
  478. Converting 3-way reactions to 2-way reactions
  479. \end_layout
  480. \begin_layout Standard
  481. Suppose we have a three-way reaction
  482. \begin_inset Formula \[
  483. A_{1}+A_{2}+A_{3}\overset{k}{\longrightarrow}A_{123}\]
  484. \end_inset
  485. which we wish to approximate by nine bimolecular reactions:
  486. \begin_inset Formula \[
  487. \begin{array}{rcl}
  488. A_{1}+A_{2} & \overset{k_{12}}{\longrightarrow} & A_{12}\\
  489. A_{1}+A_{3} & \overset{k_{13}}{\longrightarrow} & A_{13}\\
  490. A_{2}+A_{3} & \overset{k_{23}}{\longrightarrow} & A_{23}\\
  491. A_{12} & \overset{k_{-12}}{\longrightarrow} & A_{1}+A_{2}\\
  492. A_{13} & \overset{k_{-13}}{\longrightarrow} & A_{1}+A_{3}\\
  493. A_{23} & \overset{k_{-23}}{\longrightarrow} & A_{2}+A_{3}\\
  494. A_{3}+A_{12} & \overset{k_{3}}{\longrightarrow} & A_{123}\\
  495. A_{2}+A_{13} & \overset{k_{2}}{\longrightarrow} & A_{123}\\
  496. A_{1}+A_{23} & \overset{k_{1}}{\longrightarrow} & A_{123}\end{array}\]
  497. \end_inset
  498. At quasi-steady state, we want to match rate of entry in to the
  499. \begin_inset Formula $A_{123}$
  500. \end_inset
  501. state:
  502. \begin_inset Formula \begin{equation}
  503. kA_{1}A_{2}A_{3}=k_{1}A_{1}A_{23}+k_{2}A_{2}A_{13}+k_{3}A_{3}A_{12}\label{eqn_qss_match}\end{equation}
  504. \end_inset
  505. And we also wish to keep the quasi-steady state concentrations of the intermedi
  506. ates
  507. \begin_inset Formula $A_{12}$
  508. \end_inset
  509. ,
  510. \begin_inset Formula $A_{13}$
  511. \end_inset
  512. , and
  513. \begin_inset Formula $A_{23}$
  514. \end_inset
  515. low compared to the starting materials.
  516. In general, we will have
  517. \begin_inset Formula \[
  518. \frac{d}{dt}A_{hi}=-k_{j}A_{j}A_{hi}-k_{-hi}A_{hi}+k_{hi}A_{h}A_{i}\approx0\]
  519. \end_inset
  520. so that
  521. \begin_inset Formula \[
  522. A_{hi}\approx\frac{k_{hi}A_{h}A_{i}}{k_{-hi}+k_{j}A_{j}}\]
  523. \end_inset
  524. If we want this to be roughly independent of the concentration of
  525. \begin_inset Formula $A_{j}$
  526. \end_inset
  527. then we require
  528. \begin_inset Formula $k_{-hi}\gg k_{j}A_{j}$
  529. \end_inset
  530. and can rewrite this as
  531. \begin_inset Formula \[
  532. A_{hi}\approx\frac{k_{hi}}{k_{-hi}}A_{h}A_{i}\left(1-\frac{k_{j}A_{j}}{k_{-hi}}\right)\]
  533. \end_inset
  534. If we further require that
  535. \begin_inset Formula $A_{hi}$
  536. \end_inset
  537. be small compared to
  538. \begin_inset Formula $A_{h}$
  539. \end_inset
  540. and
  541. \begin_inset Formula $A_{i}$
  542. \end_inset
  543. , we also require
  544. \begin_inset Formula $\frac{k_{hi}}{k_{-hi}}\ll\frac{1}{\max(A_{h},A_{i})}$
  545. \end_inset
  546. .
  547. Let
  548. \begin_inset Formula $A_{+}$
  549. \end_inset
  550. be the largest value of any of the
  551. \begin_inset Formula $A_{i}$
  552. \end_inset
  553. during a simulation.
  554. Furthermore, let us set all
  555. \begin_inset Formula $k_{j}$
  556. \end_inset
  557. to be
  558. \begin_inset Formula $k^{\star}$
  559. \end_inset
  560. , all
  561. \begin_inset Formula $k_{hi}$
  562. \end_inset
  563. to be
  564. \begin_inset Formula $k^{\dagger}$
  565. \end_inset
  566. and all
  567. \begin_inset Formula $k_{-hi}$
  568. \end_inset
  569. to be
  570. \begin_inset Formula $k^{\ddagger}$
  571. \end_inset
  572. .
  573. Then our constraints require that
  574. \begin_inset Formula $k^{\ddagger}\gg k^{\star}A_{+}$
  575. \end_inset
  576. and
  577. \begin_inset Formula $k^{\dagger}\ll k^{\ddagger}\frac{1}{A_{+}}$
  578. \end_inset
  579. ; taken together,
  580. \begin_inset Formula $k^{\dagger}\approx k^{\star}$
  581. \end_inset
  582. is a valid solution, so we may as well make the two the same,
  583. \begin_inset Formula $k^{\prime}$
  584. \end_inset
  585. .
  586. Thus, we have a forward reaction rate
  587. \begin_inset Formula $k^{\prime}$
  588. \end_inset
  589. for all binding reactions and a backward reaction rate
  590. \begin_inset Formula $k^{\ddagger}$
  591. \end_inset
  592. for dissociation of the intermediates.
  593. \end_layout
  594. \begin_layout Standard
  595. Thus, equation (
  596. \begin_inset LatexCommand \ref{eqn_qss_match}
  597. \end_inset
  598. ) becomes
  599. \begin_inset Formula \[
  600. kA_{1}A_{2}A_{3}\approx k^{\prime}A_{1}\frac{k^{\prime}}{k^{\ddagger}}A_{2}A_{3}+k^{\prime}A_{2}\frac{k^{\prime}}{k^{\ddagger}}A_{1}A_{3}+k^{\prime}A_{3}\frac{k^{\prime}}{k^{\ddagger}}A_{1}A_{2}=3\frac{{k^{\prime}}^{2}}{k^{\ddagger}}A_{1}A_{2}A_{3}\]
  601. \end_inset
  602. with a first-order error term
  603. \begin_inset Formula \[
  604. -\frac{{k^{\prime}}^{3}}{{k^{\ddagger}}^{2}}A_{1}A_{2}A_{3}\left(A_{1}+A_{2}+A_{3}\right)\]
  605. \end_inset
  606. If we let
  607. \begin_inset Formula $k^{\ddagger}=\alpha k^{\prime}$
  608. \end_inset
  609. , where
  610. \begin_inset Formula $\alpha\gg A_{+}$
  611. \end_inset
  612. , we then have
  613. \begin_inset Formula \[
  614. k\approx\frac{3}{\alpha}k^{\prime}-\frac{A_{1}+A_{2}+A_{3}}{\alpha^{2}}k^{\prime}\]
  615. \end_inset
  616. Thus,
  617. \begin_inset Formula \[
  618. k_{1}=k_{2}=k_{3}=k_{12}=k_{13}=k_{23}=k^{\prime}\approx\frac{1}{3}\alpha k\]
  619. \end_inset
  620. and
  621. \begin_inset Formula \[
  622. k_{-12}=k_{-13}=k_{-23}=k^{\ddagger}\approx\frac{1}{3}\alpha^{2}k\]
  623. \end_inset
  624. Note that our fractional error is approximately
  625. \begin_inset Formula $1/\alpha$
  626. \end_inset
  627. , i.e.
  628. if we let
  629. \begin_inset Formula $\alpha=100\, A_{+}$
  630. \end_inset
  631. our fractional error would be under 1%.
  632. \end_layout
  633. \begin_layout Subsubsection*
  634. Notes on Units
  635. \end_layout
  636. \begin_layout Standard
  637. When rates are measured for bimolecular reactions between a volume molecule
  638. and a surface molecule, one can lay down a surface with known (or measurable)
  639. area
  640. \begin_inset Formula $\mathcal{A}$
  641. \end_inset
  642. in a solution of volume
  643. \begin_inset Formula $\mathcal{V}$
  644. \end_inset
  645. .
  646. You then add
  647. \begin_inset Formula $n_{1}$
  648. \end_inset
  649. volume molecules (concentration
  650. \begin_inset Formula $\rho_{1}=n_{1}/\mathcal{V}$
  651. \end_inset
  652. in units of #/unit volume) and
  653. \begin_inset Formula $n_{2}$
  654. \end_inset
  655. surface molecules (at density
  656. \begin_inset Formula $\sigma_{2}=n_{2}/\mathcal{A}$
  657. \end_inset
  658. ) and measure
  659. \begin_inset Formula \[
  660. \frac{d\rho_{1}}{dt}=-k_{\rho}\rho_{1}\sigma_{2}\]
  661. \end_inset
  662. \end_layout
  663. \begin_layout Standard
  664. where
  665. \begin_inset Formula $k_{\rho}$
  666. \end_inset
  667. is the rate constant with units of
  668. \begin_inset Formula $\mathrm{area}\cdot\#^{-1}\cdot\mathrm{s}^{-1}$
  669. \end_inset
  670. .
  671. One can equally well write this as
  672. \begin_inset Formula \[
  673. \frac{d\sigma_{2}}{dt}=-k_{\sigma}\rho_{1}\sigma_{2}\]
  674. \end_inset
  675. where
  676. \begin_inset Formula $k_{\sigma}$
  677. \end_inset
  678. has units of
  679. \begin_inset Formula $\mathrm{volume}\cdot\#^{-1}\cdot\mathrm{s}^{-1}$
  680. \end_inset
  681. .
  682. Of course, the numbers of molecules reacting are the same, so that
  683. \begin_inset Formula \[
  684. -k_{\sigma}\mathcal{V}^{-1}n_{1}n_{2}=\mathcal{A}\frac{d\sigma_{2}}{dt}=\frac{dn_{2}}{dt}=\frac{dn_{1}}{dt}=\mathcal{V}\frac{d\rho_{1}}{dt}=-k_{\rho}\mathcal{A}^{-1}n_{1}n_{2}\]
  685. \end_inset
  686. We can now let
  687. \begin_inset Formula $k_{n}=k_{\sigma}\mathcal{V}^{-1}=k_{\rho}\mathcal{A}^{-1}$
  688. \end_inset
  689. and write
  690. \begin_inset Formula \[
  691. \frac{dn_{\star}}{dt}=-k_{n}n_{1}n_{2}\]
  692. \end_inset
  693. \end_layout
  694. \begin_layout Standard
  695. But one can also define
  696. \begin_inset Formula $\rho_{2}=\sigma_{2}\cdot\frac{\mathcal{A}}{\mathcal{V}}$
  697. \end_inset
  698. , that is, treat the surface molecule as if it were a volume molecule, and
  699. then
  700. \begin_inset Formula \[
  701. \frac{d\rho_{\star}}{dt}=\frac{dn_{\diamond}}{dt}\mathcal{V}^{-1}=-k_{n}\rho_{1}\rho_{2}\mathcal{V}^{-1}=-k_{\star}\rho_{1}\rho_{2}\]
  702. \end_inset
  703. where
  704. \begin_inset Formula $k_{\star}=k_{n}\cdot\mathcal{V}^{-1}$
  705. \end_inset
  706. ; here
  707. \begin_inset Formula $\star$
  708. \end_inset
  709. stands for one of
  710. \begin_inset Formula $1$
  711. \end_inset
  712. or
  713. \begin_inset Formula $2$
  714. \end_inset
  715. , while
  716. \begin_inset Formula $\diamond$
  717. \end_inset
  718. stands for the other.
  719. \end_layout
  720. \begin_layout Standard
  721. If one is performing a stochastic calculation, the total number of hits
  722. on all surface molecules in a short time
  723. \begin_inset Formula $\Delta t$
  724. \end_inset
  725. is
  726. \begin_inset Formula \[
  727. n_{2}\frac{\rho_{1}A\lambda}{2\sqrt{\pi}}\Delta t\]
  728. \end_inset
  729. where
  730. \begin_inset Formula $A$
  731. \end_inset
  732. is the area of a single surface molecule.
  733. From the well-mixed continuum approximation, the probability should be
  734. scaled such that
  735. \begin_inset Formula \[
  736. -p_{\mathrm{rx}}\cdot n_{2}\frac{\rho_{1}A\lambda}{2\sqrt{\pi}}=\frac{dn_{\diamond}}{dt}\Delta t=\mathcal{V}\frac{d\rho_{\star}}{dt}\Delta t=-k_{\star}n_{2}\rho_{1}\Delta t\]
  737. \end_inset
  738. so that
  739. \begin_inset Formula $p_{\mathrm{rx}}=k_{\star}\cdot2\sqrt{\pi}/Av$
  740. \end_inset
  741. where
  742. \begin_inset Formula $v=\lambda/\Delta t$
  743. \end_inset
  744. .
  745. Thus, we can use the volumetric rate constant
  746. \begin_inset Formula $k_{\star}$
  747. \end_inset
  748. where we need only convert from molarity to #/unit volume---we need not
  749. know the original volume of the test sample or the area of membrane in
  750. it, as long as the value of
  751. \begin_inset Formula $k_{\mathrm{\star}}$
  752. \end_inset
  753. is reported.
  754. Conveniently, one can measure
  755. \begin_inset Formula $k_{\star}$
  756. \end_inset
  757. without even knowing the area of the membrane.
  758. \end_layout
  759. \begin_layout Standard
  760. However, if we add a second surface component at density
  761. \begin_inset Formula $\sigma_{3}$
  762. \end_inset
  763. , the above is no longer true since the reaction rate is no longer proportional
  764. to the numbers of each molecule.
  765. In particular,
  766. \begin_inset Formula \[
  767. \frac{d\rho_{1}}{dt}=-k_{\rho}\rho_{1}\sigma_{2}\sigma_{3}\]
  768. \end_inset
  769. \begin_inset Formula \[
  770. \frac{d\sigma_{i\in\{2,3\}}}{dt}=-k_{\sigma}\rho_{1}\sigma_{2}\sigma_{3}\]
  771. \end_inset
  772. defines the reactions, but now
  773. \begin_inset Formula \[
  774. \frac{dn_{1}}{dt}=\mathcal{V}\frac{d\rho_{1}}{dt}=-k_{\rho}n_{1}n_{2}n_{3}\mathcal{A}^{-2}\]
  775. \end_inset
  776. \begin_inset Formula \[
  777. \frac{dn_{i}}{dt}=\mathcal{A}\frac{d\sigma_{i}}{dt}=-k_{\sigma}n_{1}n_{2}n_{3}\mathcal{A}^{-1}\mathcal{V}^{-1}\]
  778. \end_inset
  779. so that
  780. \begin_inset Formula $k_{n}=k_{\sigma}\mathcal{A}^{-1}\mathcal{V}^{-1}=k_{\rho}\mathcal{A}^{-2}$
  781. \end_inset
  782. .
  783. If we try the same trick of converting
  784. \begin_inset Formula $\sigma_{2}$
  785. \end_inset
  786. and
  787. \begin_inset Formula $\sigma_{3}$
  788. \end_inset
  789. to volumes, we find that -k
  790. \begin_inset Formula \[
  791. -k_{\star}\rho_{1}\rho_{2}\rho_{3}=\frac{d\rho_{\star}}{dt}=\mathcal{V}^{-1}\frac{dn_{\star}}{dt}=-k_{n}n_{1}n_{2}n_{3}\mathcal{V}^{-1}=-k_{n}\rho_{1}\rho_{2}\rho_{3}\mathcal{V}^{2}\]
  792. \end_inset
  793. so that
  794. \begin_inset Formula $k_{n}=k_{\star}\mathcal{V}^{-2}$
  795. \end_inset
  796. .
  797. When we try to match total numbers of molecules reacting, we find that
  798. there are
  799. \begin_inset Formula \[
  800. p_{\mathrm{rx}}\frac{3\rho_{1}\sigma_{2}\sigma_{3}A^{3}\lambda}{\sqrt{\pi}}\cdot\frac{\mathcal{A}}{A}\]
  801. \end_inset
  802. total reactions in time
  803. \begin_inset Formula $\Delta t$
  804. \end_inset
  805. in a stochastic treatment (the factor of
  806. \begin_inset Formula $\mathcal{A}/A$
  807. \end_inset
  808. arises from the difference between the per-receptor area and the total
  809. surface area), and
  810. \begin_inset Formula \[
  811. \frac{dn_{\star}}{dt}\Delta t=\mathcal{V}\frac{d\rho_{\star}}{dt}\Delta t=-k_{\star}\rho_{1}\rho_{2}\rho_{3}\mathcal{V}\Delta t=-k_{\star}\rho_{1}\sigma_{2}\sigma_{3}\frac{\mathcal{A}^{2}}{\mathcal{V}}\Delta t\]
  812. \end_inset
  813. from the deterministic continuum equations.
  814. Equating the two (with the correct sign) gives
  815. \begin_inset Formula \[
  816. p_{rx}=k_{\star}\frac{\sqrt{\pi}}{3A^{2}v}\cdot\frac{\mathcal{A}}{\mathcal{V}}\]
  817. \end_inset
  818. This is problematic because the probability of reaction now depends on
  819. the surface to volume ratio
  820. \begin_inset Formula $\mathcal{A}/\mathcal{V}$
  821. \end_inset
  822. ; what we need is
  823. \begin_inset Formula $k_{\star}\frac{\mathcal{A}}{\mathcal{V}}$
  824. \end_inset
  825. .
  826. Fortunately,
  827. \begin_inset Formula $k_{\sigma}=k_{n}\mathcal{A}\mathcal{V}=k_{\star}\frac{\mathcal{A}}{\mathcal{V}}$
  828. \end_inset
  829. .
  830. Thus, the only appropriate rate constant for three-molecule reactions is
  831. \begin_inset Formula $k_{\sigma}$
  832. \end_inset
  833. , which has units of
  834. \begin_inset Formula $\mathrm{volume}\cdot\mathrm{area}\cdot\#^{-2}\cdot s^{-1}$
  835. \end_inset
  836. .
  837. \end_layout
  838. \end_body
  839. \end_document