lr_bar_2D.tex 2.5 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576
  1. \documentclass[aps,superscriptaddress,preprint,amsmath,floatfix,byrevtex]{article}
  2. \usepackage[pdftex]{graphicx}
  3. \usepackage{textcomp}
  4. \usepackage{amsmath}
  5. \usepackage{dcolumn}
  6. \oddsidemargin 0.1in
  7. \evensidemargin 0.1in
  8. \textwidth 6.7in
  9. \newcommand{\lrbar}{\bar{l}_{\rho}^{\mathrm{2D}}}
  10. \begin{document}
  11. \title{Derivation of the mean radial displacement, $\lrbar$, in 2 dimensions}
  12. \author{Markus Dittrich}
  13. \date{\today}
  14. %\pacs{}
  15. \maketitle
  16. \section{Introduction}
  17. In the following we derive an expression for the mean radial displacement, $\lrbar$,
  18. for diffusing 2D molecules in analogy to the well known expression for $\bar{l}_r$
  19. in three dimensions.
  20. \section{Derivation}
  21. Starting point is the solution of the diffusion equation in 2 dimensions
  22. \begin{equation}
  23. \frac{\partial c(\rho,t)}{\partial t} = D \nabla^2 c(\rho,t)
  24. \end{equation}
  25. which, for a point source of $M$ molecules released at the origin at time $t=0$
  26. can be shown to be
  27. \begin{equation}
  28. c(\rho,t) = \frac{M}{4 \pi Dt} e^{- \frac{\rho^2}{4Dt}}
  29. \end{equation}
  30. (see also Eqs. 3.1, 3.2 in \cite{KERR2008}). Therefore, the probability
  31. density for a molecule being in a radial shell of thickness $d\rho$ around the
  32. origin is given by
  33. \begin{equation}
  34. p^{\mathrm{2D}} (\rho,t) = \frac{(2 \pi \rho) d\rho}{4\pi Dt} e^{- \frac{\rho^2}{4Dt}}
  35. \end{equation}
  36. or, in normalized coordinates $\tilde{\rho} = \frac{\rho}{\lambda}$ with the
  37. normalization constant $\lambda = \sqrt{4Dt}$
  38. \begin{equation}
  39. p^{\mathrm{2D}} (\tilde{\rho},t) = 2 e^{-\tilde{\rho}^2} (\tilde{\rho} d\tilde{\rho})
  40. \;\;\;\; .
  41. \end{equation}
  42. Hence, the mean radial displacement of a 2D molecule is given by
  43. \begin{equation}
  44. \lrbar = 2 \lambda \int_0^{\infty} \tilde{\rho}^2 e^{- \tilde{\rho}^2} d\tilde{\rho}
  45. \end{equation}
  46. Since
  47. \begin{eqnarray}
  48. \int_0^{\infty} t^{2n} e^{-at^2} dt &=& \frac{\Gamma(n+\frac{1}{2})}{2a^{n+\frac{1}{2}}}
  49. \nonumber \\
  50. \Rightarrow \int_0^{\infty} \tilde{\rho}^2 e^{- \tilde{\rho}^2} d\tilde{\rho} &=&
  51. \frac{\Gamma(\frac{3}{2})}{2} = \frac{\sqrt{\pi}}{4}
  52. \end{eqnarray}
  53. and from this
  54. \begin{equation}
  55. \boxed{
  56. \lrbar = 2 \lambda \frac{\sqrt{\pi}}{4} = \sqrt{\pi D t}
  57. }
  58. \end{equation}
  59. \begin{thebibliography}{99}
  60. \bibitem{KERR2008} R. Kerr, T.M. Bartol, B. Kaminsky, M. Dittrich, J.C.J. Chang, S. Baden,
  61. T.J. Sejnowski, and J.R. Stiles, Fast Monte Carlo Simulation Methods for Biological
  62. Reaction-Diffusion Systems in Solution and on Surfaces (2008),
  63. SIAM J. Sci. Comput., 30:3126-3149.
  64. \end{thebibliography}
  65. \end{document}