123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990 |
- /*
- tests/test_numpy_vectorize.cpp -- auto-vectorize functions over NumPy array
- arguments
- Copyright (c) 2016 Wenzel Jakob <[email protected]>
- All rights reserved. Use of this source code is governed by a
- BSD-style license that can be found in the LICENSE file.
- */
- #include "pybind11_tests.h"
- #include <pybind11/numpy.h>
- double my_func(int x, float y, double z) {
- py::print("my_func(x:int={}, y:float={:.0f}, z:float={:.0f})"_s.format(x, y, z));
- return (float) x*y*z;
- }
- TEST_SUBMODULE(numpy_vectorize, m) {
- try { py::module::import("numpy"); }
- catch (...) { return; }
- // test_vectorize, test_docs, test_array_collapse
- // Vectorize all arguments of a function (though non-vector arguments are also allowed)
- m.def("vectorized_func", py::vectorize(my_func));
- // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization)
- m.def("vectorized_func2",
- [](py::array_t<int> x, py::array_t<float> y, float z) {
- return py::vectorize([z](int x, float y) { return my_func(x, y, z); })(x, y);
- }
- );
- // Vectorize a complex-valued function
- m.def("vectorized_func3", py::vectorize(
- [](std::complex<double> c) { return c * std::complex<double>(2.f); }
- ));
- // test_type_selection
- // Numpy function which only accepts specific data types
- m.def("selective_func", [](py::array_t<int, py::array::c_style>) { return "Int branch taken."; });
- m.def("selective_func", [](py::array_t<float, py::array::c_style>) { return "Float branch taken."; });
- m.def("selective_func", [](py::array_t<std::complex<float>, py::array::c_style>) { return "Complex float branch taken."; });
- // test_passthrough_arguments
- // Passthrough test: references and non-pod types should be automatically passed through (in the
- // function definition below, only `b`, `d`, and `g` are vectorized):
- struct NonPODClass {
- NonPODClass(int v) : value{v} {}
- int value;
- };
- py::class_<NonPODClass>(m, "NonPODClass").def(py::init<int>());
- m.def("vec_passthrough", py::vectorize(
- [](double *a, double b, py::array_t<double> c, const int &d, int &e, NonPODClass f, const double g) {
- return *a + b + c.at(0) + d + e + f.value + g;
- }
- ));
- // test_method_vectorization
- struct VectorizeTestClass {
- VectorizeTestClass(int v) : value{v} {};
- float method(int x, float y) { return y + (float) (x + value); }
- int value = 0;
- };
- py::class_<VectorizeTestClass> vtc(m, "VectorizeTestClass");
- vtc .def(py::init<int>())
- .def_readwrite("value", &VectorizeTestClass::value);
- // Automatic vectorizing of methods
- vtc.def("method", py::vectorize(&VectorizeTestClass::method));
- // test_trivial_broadcasting
- // Internal optimization test for whether the input is trivially broadcastable:
- py::enum_<py::detail::broadcast_trivial>(m, "trivial")
- .value("f_trivial", py::detail::broadcast_trivial::f_trivial)
- .value("c_trivial", py::detail::broadcast_trivial::c_trivial)
- .value("non_trivial", py::detail::broadcast_trivial::non_trivial);
- m.def("vectorized_is_trivial", [](
- py::array_t<int, py::array::forcecast> arg1,
- py::array_t<float, py::array::forcecast> arg2,
- py::array_t<double, py::array::forcecast> arg3
- ) {
- ssize_t ndim;
- std::vector<ssize_t> shape;
- std::array<py::buffer_info, 3> buffers {{ arg1.request(), arg2.request(), arg3.request() }};
- return py::detail::broadcast(buffers, ndim, shape);
- });
- }
|