12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576 |
- \documentclass[aps,superscriptaddress,preprint,amsmath,floatfix,byrevtex]{article}
- \usepackage[pdftex]{graphicx}
- \usepackage{textcomp}
- \usepackage{amsmath}
- \usepackage{dcolumn}
- \oddsidemargin 0.1in
- \evensidemargin 0.1in
- \textwidth 6.7in
- \newcommand{\lrbar}{\bar{l}_{\rho}^{\mathrm{2D}}}
- \begin{document}
- \title{Derivation of the mean radial displacement, $\lrbar$, in 2 dimensions}
- \author{Markus Dittrich}
- \date{\today}
- %\pacs{}
- \maketitle
- \section{Introduction}
- In the following we derive an expression for the mean radial displacement, $\lrbar$,
- for diffusing 2D molecules in analogy to the well known expression for $\bar{l}_r$
- in three dimensions.
- \section{Derivation}
- Starting point is the solution of the diffusion equation in 2 dimensions
- \begin{equation}
- \frac{\partial c(\rho,t)}{\partial t} = D \nabla^2 c(\rho,t)
- \end{equation}
- which, for a point source of $M$ molecules released at the origin at time $t=0$
- can be shown to be
- \begin{equation}
- c(\rho,t) = \frac{M}{4 \pi Dt} e^{- \frac{\rho^2}{4Dt}}
- \end{equation}
- (see also Eqs. 3.1, 3.2 in \cite{KERR2008}). Therefore, the probability
- density for a molecule being in a radial shell of thickness $d\rho$ around the
- origin is given by
- \begin{equation}
- p^{\mathrm{2D}} (\rho,t) = \frac{(2 \pi \rho) d\rho}{4\pi Dt} e^{- \frac{\rho^2}{4Dt}}
- \end{equation}
- or, in normalized coordinates $\tilde{\rho} = \frac{\rho}{\lambda}$ with the
- normalization constant $\lambda = \sqrt{4Dt}$
- \begin{equation}
- p^{\mathrm{2D}} (\tilde{\rho},t) = 2 e^{-\tilde{\rho}^2} (\tilde{\rho} d\tilde{\rho})
- \;\;\;\; .
- \end{equation}
- Hence, the mean radial displacement of a 2D molecule is given by
- \begin{equation}
- \lrbar = 2 \lambda \int_0^{\infty} \tilde{\rho}^2 e^{- \tilde{\rho}^2} d\tilde{\rho}
- \end{equation}
- Since
- \begin{eqnarray}
- \int_0^{\infty} t^{2n} e^{-at^2} dt &=& \frac{\Gamma(n+\frac{1}{2})}{2a^{n+\frac{1}{2}}}
- \nonumber \\
- \Rightarrow \int_0^{\infty} \tilde{\rho}^2 e^{- \tilde{\rho}^2} d\tilde{\rho} &=&
- \frac{\Gamma(\frac{3}{2})}{2} = \frac{\sqrt{\pi}}{4}
- \end{eqnarray}
- and from this
- \begin{equation}
- \boxed{
- \lrbar = 2 \lambda \frac{\sqrt{\pi}}{4} = \sqrt{\pi D t}
- }
- \end{equation}
- \begin{thebibliography}{99}
- \bibitem{KERR2008} R. Kerr, T.M. Bartol, B. Kaminsky, M. Dittrich, J.C.J. Chang, S. Baden,
- T.J. Sejnowski, and J.R. Stiles, Fast Monte Carlo Simulation Methods for Biological
- Reaction-Diffusion Systems in Solution and on Surfaces (2008),
- SIAM J. Sci. Comput., 30:3126-3149.
- \end{thebibliography}
- \end{document}
|