#LyX 1.4.3 created this file. For more info see http://www.lyx.org/ \lyxformat 245 \begin_document \begin_header \textclass article \language english \inputencoding auto \fontscheme pslatex \graphics default \paperfontsize 12 \spacing single \papersize letterpaper \use_geometry true \use_amsmath 2 \cite_engine basic \use_bibtopic false \paperorientation portrait \leftmargin 1in \topmargin 0.85in \rightmargin 1in \bottommargin 0.85in \headheight 0in \headsep 0in \footskip 0in \secnumdepth 3 \tocdepth 3 \paragraph_separation skip \defskip medskip \quotes_language english \papercolumns 1 \papersides 1 \paperpagestyle empty \tracking_changes false \output_changes true \end_header \begin_body \begin_layout Subsection* Reactions with More than Two Components \end_layout \begin_layout Subsubsection* Three-way reactions in MCell \end_layout \begin_layout Standard The rate of reaction of a molecule that can engage in a three-way reaction with reactants \begin_inset Formula $I$ \end_inset and \begin_inset Formula $J$ \end_inset at concentrations \begin_inset Formula $\rho_{I}$ \end_inset and \begin_inset Formula $\rho_{J}$ \end_inset is \begin_inset Formula $\kappa\rho_{I}\rho_{J}$ \end_inset . Suppose that a single molecule moves a distance \begin_inset Formula $R$ \end_inset while sweeping out an interaction area \begin_inset Formula $A$ \end_inset . Then the expected number of hits, assuming that the concentration of \begin_inset Formula $I$ \end_inset and \begin_inset Formula $J$ \end_inset is low, is \begin_inset Formula \[ n_{\mathrm{{hits}}}=R\, A\,\rho_{I}\cdot R\, A\,\rho_{J}\] \end_inset Thus, the expected number of hits for a molecule with a diffusion length constant of \begin_inset Formula $\lambda$ \end_inset is \begin_inset Formula \[ n_{\mathrm{{hits}}}=\int_{0}^{\infty}\rho_{I}\rho_{J}A^{2}R^{2}\frac{4\pi R^{2}}{\pi^{3/2}\lambda^{3}}e^{-R^{2}/\lambda^{2}}dR=\frac{3}{2}\rho_{I}\rho_{J}A^{2}\lambda^{2}\] \end_inset If we let \begin_inset Formula $p$ \end_inset be the probability of reaction, then \begin_inset Formula \[ \kappa\rho_{I}\rho_{J}\Delta t=p\cdot n=p\cdot\frac{3}{2}\rho_{I}\rho_{J}A^{2}\lambda^{2}\] \end_inset Solving for \begin_inset Formula $p$ \end_inset gives \begin_inset Formula \[ p=\frac{\kappa}{6D\, A^{2}}\] \end_inset assuming that \begin_inset Formula $\Delta t$ \end_inset is the time step for the moving molecule. If we let all three reactants move and react---let us number them 1, 2, and 3---then we matching the total rate gives \begin_inset Formula \[ \kappa\rho_{1}\rho_{2}\rho_{3}\Delta t=\frac{3}{2}\rho_{1}\rho_{2}\rho_{3}A^{2}\left(p_{1}\frac{\Delta t}{\Delta t_{1}}\lambda_{1}^{2}+p_{2}\frac{\Delta t}{\Delta t_{2}}\lambda_{2}^{2}+p_{3}\frac{\Delta t}{\Delta t_{3}}\lambda_{3}^{2}\right)\] \end_inset where in general the individual molecules may move with custom timesteps \begin_inset Formula $\Delta t_{i}$ \end_inset . We let \begin_inset Formula $p_{1}=p_{2}=p_{3}=p$ \end_inset to give \begin_inset Formula \[ p=\frac{\kappa}{6\left(D_{1}+D_{2}+D_{3}\right)A^{2}}\] \end_inset This solution also works for the cases where some of the reactants can't move (as \begin_inset Formula $D_{i}$ \end_inset will be zero and will drop out of the equation). \end_layout \begin_layout Standard Now suppose that the reaction takes place near a surface such that for a fraction \begin_inset Formula $a$ \end_inset of the distance, the molecule sweeps out \begin_inset Formula $A^{\star}