\documentclass[aps,superscriptaddress,preprint,amsmath,floatfix,byrevtex]{article} \usepackage[pdftex]{graphicx} \usepackage{textcomp} \usepackage{amsmath} \usepackage{dcolumn} \oddsidemargin 0.1in \evensidemargin 0.1in \textwidth 6.7in \newcommand{\lrbar}{\bar{l}_{\rho}^{\mathrm{2D}}} \begin{document} \title{Derivation of the mean radial displacement, $\lrbar$, in 2 dimensions} \author{Markus Dittrich} \date{\today} %\pacs{} \maketitle \section{Introduction} In the following we derive an expression for the mean radial displacement, $\lrbar$, for diffusing 2D molecules in analogy to the well known expression for $\bar{l}_r$ in three dimensions. \section{Derivation} Starting point is the solution of the diffusion equation in 2 dimensions \begin{equation} \frac{\partial c(\rho,t)}{\partial t} = D \nabla^2 c(\rho,t) \end{equation} which, for a point source of $M$ molecules released at the origin at time $t=0$ can be shown to be \begin{equation} c(\rho,t) = \frac{M}{4 \pi Dt} e^{- \frac{\rho^2}{4Dt}} \end{equation} (see also Eqs. 3.1, 3.2 in \cite{KERR2008}). Therefore, the probability density for a molecule being in a radial shell of thickness $d\rho$ around the origin is given by \begin{equation} p^{\mathrm{2D}} (\rho,t) = \frac{(2 \pi \rho) d\rho}{4\pi Dt} e^{- \frac{\rho^2}{4Dt}} \end{equation} or, in normalized coordinates $\tilde{\rho} = \frac{\rho}{\lambda}$ with the normalization constant $\lambda = \sqrt{4Dt}$ \begin{equation} p^{\mathrm{2D}} (\tilde{\rho},t) = 2 e^{-\tilde{\rho}^2} (\tilde{\rho} d\tilde{\rho}) \;\;\;\; . \end{equation} Hence, the mean radial displacement of a 2D molecule is given by \begin{equation} \lrbar = 2 \lambda \int_0^{\infty} \tilde{\rho}^2 e^{- \tilde{\rho}^2} d\tilde{\rho} \end{equation} Since \begin{eqnarray} \int_0^{\infty} t^{2n} e^{-at^2} dt &=& \frac{\Gamma(n+\frac{1}{2})}{2a^{n+\frac{1}{2}}} \nonumber \\ \Rightarrow \int_0^{\infty} \tilde{\rho}^2 e^{- \tilde{\rho}^2} d\tilde{\rho} &=& \frac{\Gamma(\frac{3}{2})}{2} = \frac{\sqrt{\pi}}{4} \end{eqnarray} and from this \begin{equation} \boxed{ \lrbar = 2 \lambda \frac{\sqrt{\pi}}{4} = \sqrt{\pi D t} } \end{equation} \begin{thebibliography}{99} \bibitem{KERR2008} R. Kerr, T.M. Bartol, B. Kaminsky, M. Dittrich, J.C.J. Chang, S. Baden, T.J. Sejnowski, and J.R. Stiles, Fast Monte Carlo Simulation Methods for Biological Reaction-Diffusion Systems in Solution and on Surfaces (2008), SIAM J. Sci. Comput., 30:3126-3149. \end{thebibliography} \end{document}