
Reactions with More than Two Components

Three-way reactions in MCell

The rate of reaction of a molecule that can engage in a three-way reaction with reactants I and J at
concentrations ρI and ρJ is κρIρJ . Suppose that a single molecule moves a distance R while sweep-
ing out an interaction area A. Then the expected number of hits, assuming that the concentration
of I and J is low, is

nhits = RAρI ·RAρJ

Thus, the expected number of hits for a molecule with a diffusion length constant of λ is
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If we let p be the probability of reaction, then
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Solving for p gives
p =
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assuming that ∆t is the time step for the moving molecule. If we let all three reactants move and
react—let us number them 1, 2, and 3—then we matching the total rate gives
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where in general the individual molecules may move with custom timesteps ∆ti. We let p1 = p2 =
p3 = p to give

p =
κ

6(D1 +D2 +D3)A2

This solution also works for the cases where some of the reactants can’t move (as Di will be zero
and will drop out of the equation).

Now suppose that the reaction takes place near a surface such that for a fraction a of the distance,
the molecule sweeps out A? < A of area instead of A. The expected number of hits is then

n?
hits = RρI ((1−a)A+aA?) RρJ ((1−a)A+aA?)

which we can rewrite as
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where the first term occurs when both hits are in the unconstrained space, the second when one
target molecule is in the unconstrained space and one is in the constrained space, and the third
when both targets are in the constrained space. If we multiply the probability of reaction by the



inverse of the fractional areas for each target, i.e., by A/A? if one target is in the constrained space
and (A/A?)2 when both are in the constrained space, we then find that the total rate of reaction is
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That is, the reaction rate is unchanged, which is exactly what we want. Since a is arbitrary, we can
make a differentially small and thus the result holds for arbitrary restrictions of the swept area.

3-way reactions plus a surface in MCell

If we have three reactants but one of them is on a surface, we can calculate the probability of the
moving molecule both striking the surface and hitting the other reactants. If the molecule is a
distance h above the surface, then the probability of hitting the surface is
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But the molecule also diffuses in the xy plane, and this determines the length of the collision
cylinder. If the diffusion distance is rxy in that plane, then the total diffusion length is r =
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z . For a given rz, then, the probability of hitting another free
molecule is
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where ρ1 is the density of the other free molecule. Thus, the probability of hitting the surface from
distance h and also hitting a diffusing partner is
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The inner integral evaluates to λ2
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The outer integral works out to λ2e−h2/λ2 − λhπ1/2
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which we can integrate over the entire column above a surface molecule of area B to get the
expected number of hits:
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Since nhit · prx should be equal to the bulk reaction rate κρ1ρ2∆t, we have

prx =
4κ

3DAB

if only species 2 diffuses (note that λ2/∆t = 4D). If both volume molecules diffuse, the total
number of hits in a time ∆t is
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If the surface can be hit from either side, the number of hits doubles, so the reaction rate should be
halved:

p′rx =
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Three-way reactions with two surface components

The standard computation for the number of hits against a single surface is

nhit =
ρ1Aλ
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and the probability that a grid element is filled with an appropriate surface molecule is σiA so that
if we demand that we strike the first surface molecule directly and the second is adjacent, then the
productive hit rate is (keeping in mind that either of the two surface molecules can be the initial
target)

nproductive =
3ρ1σ2σ3A3λ√

π

The desired number of reactions is κρ1σ2σ3A∆t (if appropriate units are used for the rate constant),
so that

prx = κ
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In contrast, if one of the components is the surface itself (let’s assign it to σ3) and the other is the
molecule, the number of productive collisions drops by a factor of six (no neighbors, and only one
target), σ3A = 1 in the probability calculation and σ3 is typically omitted entirely from the bulk
equation, giving
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Three-way reactions with all surface components

If all components are in the surface, the total number of reactions per timestep for a single molecule
should be κσ2σ3∆T and the actual probability of finding the appropriate neighbors is 3σ2A ·2σ3A.
Thus the reaction probability should be

prx =
κ

6A2 ∆t



N-way reactions in MCell

Generalizing to N +1 reactants (one moving and N targets), where N is a positive integer, we find
that the collision rate is
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and the bulk rate is κ ·∏N
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By induction on the result for pairs of targets in the 3-way case, we also see that if a target i is hit
in a restricted space, the reaction probability should be multiplied by A/A?

i .

Higher order reactions with single surfaces

The primary equation for phit(h) remains the same for higher-order reactions except that ρ1Ar

turns into ∏
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i=1 ρiAr (recall that r =
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formulae for such integrals is rather tricky, but the first few values for nhit are listed here:
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The author conjectures that the formula for even N is
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These have been checked up to N = 12 in Maple 10, but these formulae have not been proven.



Higher order reactions with multiple surface components

Each time one adds a molecular surface component, one adds a factor of 1
A the first time (if one is

already hitting a surface and a molecule needs to be there also), 1
3A the second time, 1

2A the third
time, and 1

A the fourth time. More than four molecules cannot be found by adjacent search; if this is
generalized to a wider search, then if the extra partner can be found in one of n places, the reaction
probability changes by 1

nA . In addition, if there are k possible surface targets total, the reaction
probability should be multiplied by an additional 1

k .

Converting 3-way reactions to 2-way reactions

Suppose we have a three-way reaction

A1 +A2 +A3
k−→ A123

which we wish to approximate by nine bimolecular reactions:

A1 +A2
k12−→ A12

A1 +A3
k13−→ A13

A2 +A3
k23−→ A23

A12
k−12−→ A1 +A2

A13
k−13−→ A1 +A3

A23
k−23−→ A2 +A3

A3 +A12
k3−→ A123

A2 +A13
k2−→ A123

A1 +A23
k1−→ A123

At quasi-steady state, we want to match rate of entry in to the A123 state:

kA1A2A3 = k1A1A23 + k2A2A13 + k3A3A12 (1)

And we also wish to keep the quasi-steady state concentrations of the intermediates A12, A13, and
A23 low compared to the starting materials. In general, we will have

d
dt

Ahi =−k jA jAhi− k−hiAhi + khiAhAi ≈ 0

so that
Ahi ≈

khiAhAi

k−hi + k jA j

If we want this to be roughly independent of the concentration of A j then we require k−hi � k jA j
and can rewrite this as

Ahi ≈
khi

k−hi
AhAi

(
1−

k jA j

k−hi

)



If we further require that Ahi be small compared to Ah and Ai, we also require khi
k−hi

� 1
max(Ah,Ai)

. Let
A+ be the largest value of any of the Ai during a simulation. Furthermore, let us set all k j to be k?,
all khi to be k† and all k−hi to be k‡. Then our constraints require that k‡ � k?A+ and k† � k‡ 1

A+
;

taken together, k† ≈ k? is a valid solution, so we may as well make the two the same, k′. Thus,
we have a forward reaction rate k′ for all binding reactions and a backward reaction rate k‡ for
dissociation of the intermediates.

Thus, equation (1) becomes
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k′

k‡ A2A3 + k′A2
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k‡ A1A3 + k′A3
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k‡ A1A2 = 3
k′2

k‡ A1A2A3

with a first-order error term
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If we let k‡ = αk′, where α� A+, we then have
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α2 k′

Thus,

k1 = k2 = k3 = k12 = k13 = k23 = k′ ≈ 1
3
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and
k−12 = k−13 = k−23 = k‡ ≈ 1

3
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Note that our fractional error is approximately 1/α, i.e. if we let α = 100A+ our fractional error
would be under 1%.

Notes on Units

When rates are measured for bimolecular reactions between a volume molecule and a surface
molecule, one can lay down a surface with known (or measurable) area A in a solution of volume
V . You then add n1 volume molecules (concentration ρ1 = n1/V in units of #/unit volume) and
n2 surface molecules (at density σ2 = n2/A) and measure

dρ1

dt
=−kρρ1σ2

where kρ is the rate constant with units of area ·#−1 · s−1. One can equally well write this as

dσ2

dt
=−kσρ1σ2

where kσ has units of volume · #−1 · s−1. Of course, the numbers of molecules reacting are the
same, so that

−kσV −1n1n2 = A
dσ2
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=
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=
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= V

dρ1

dt
=−kρA−1n1n2



We can now let kn = kσV −1 = kρA−1 and write

dn?

dt
=−knn1n2

But one can also define ρ2 = σ2 · A
V , that is, treat the surface molecule as if it were a volume

molecule, and then
dρ?

dt
=

dn�
dt

V −1 =−knρ1ρ2V −1 =−k?ρ1ρ2

where k? = kn ·V −1; here ? stands for one of 1 or 2, while � stands for the other.

If one is performing a stochastic calculation, the total number of hits on all surface molecules in a
short time ∆t is

n2
ρ1Aλ

2
√
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where A is the area of a single surface molecule. From the well-mixed continuum approximation,
the probability should be scaled such that

−prx ·n2
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dρ?
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so that prx = k? ·2
√

π/Av where v = λ/∆t. Thus, we can use the volumetric rate constant k? where
we need only convert from molarity to #/unit volume—we need not know the original volume of
the test sample or the area of membrane in it, as long as the value of k? is reported. Conveniently,
one can measure k? without even knowing the area of the membrane.

However, if we add a second surface component at density σ3, the above is no longer true since
the reaction rate is no longer proportional to the numbers of each molecule. In particular,

dρ1

dt
=−kρρ1σ2σ3

dσi∈{2,3}
dt

=−kσρ1σ2σ3

defines the reactions, but now
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= A
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dt
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so that kn = kσA−1V −1 = kρA−2. If we try the same trick of converting σ2 and σ3 to volumes, we
find that -k

−k?ρ1ρ2ρ3 =
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dt
= V −1 dn?

dt
=−knn1n2n3V −1 =−knρ1ρ2ρ3V 2

so that kn = k?V −2. When we try to match total numbers of molecules reacting, we find that there
are
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total reactions in time ∆t in a stochastic treatment (the factor of A/A arises from the difference
between the per-receptor area and the total surface area), and

dn?

dt
∆t = V
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∆t =−k?ρ1ρ2ρ3V ∆t =−k?ρ1σ2σ3
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from the deterministic continuum equations. Equating the two (with the correct sign) gives
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√
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This is problematic because the probability of reaction now depends on the surface to volume ratio
A/V ; what we need is k?

A
V . Fortunately, kσ = knAV = k?

A
V . Thus, the only appropriate rate

constant for three-molecule reactions is kσ, which has units of volume · area ·#−2 · s−1.


