
Documentation for MCell Memory Utilities

Rex Kerr

6th February 2004

The memory utilities can be found in the �les mem_util.h and mem_util.c

1 stack_helper

The stack_helper struct and functions implement a hybrid array/linked-list stack of a set of items of the
same size. The main struct has an array of data of a speci�ed size, plus a pointer to the next part of the
stack should the �rst part over�ow. There are seven functions for dealing with stacks:

struct stack_helper* create_stack(int size,int length);
void stack_push(struct stack_helper *sh,void *d);
void stack_pop(struct stack_helper *sh, void *d);
void stack_dump(struct stack_helper *sh);
inline int stack_size(struct stack_helper *sh);
void* stack_access(struct stack_helper *sh,int n);
void delete_stack(struct stack_helper *sh);

To start, one creates a new stack using the create_stack function. The �rst argument is the size of your
data structure (e.g. sizeof(struct my_struct)). The second argument is the number of elements in an
array of that data structure. This number should be chosen small enough to not overburden memory, but
large enough so the stack can function primarily with array access rather than with list-traversal.

You can then push and pop items of that data type onto and o� of the stack using the stack_push and
stack_pop functions. Note that these copy the data, so stacks are best used for small structs or other types.

If you wish to clear out the stack, use stack_dump. To see the current size of the stack, use stack_size.
(Zero means the stack is empty.) To get a pointer to one element of the stack, use stack_access. The
oldest item on the stack has an index of 0; the most recent has an index of stack_size(...)-1.

Calling delete_stack will delete everything you've pushed onto the stack, and will free the stack_helper
itself. If you wish to only empty the stack but keep using it, use stack_dump instead.

Note: stacks are slow in the current implementation if the stack is many times longer than the length of
the array, as it has to wade down a long linked list. Need to �x this. (Easy enough, just swap so the �rst
thing always is the one with space!) Index-based access will always be slow, though (can't avoid traversing
the list).

2 mem_helper

The mem_helper struct and functions implement a hybrid array/linked-list block-memory allocation specif-
ically for linked lists. The main struct has an array of data of a speci�ed size, plus a pointer to the next
allocation block should the �rst part run out of space. It also maintains a linked list of list elements that
have been deallocated so that they can be reused. There are �ve functions for this utility:

struct mem_helper* create_mem(int size,int length);
void* mem_get(struct mem_helper *mh);
void mem_put(struct mem_helper *mh,void *defunct);
void mem_put_list(struct mem_helper *mh,void *defunct);
void delete_mem(struct mem_helper *mh);

1



To start, one creates a new helper with the create_mem function. The �rst argument is the size of your data
structure (e.g. sizeof(struct my_struct)) and the second is the number of those structures to allocate in
each chunk.

You then can use mem_get in place of malloc to get a pointer to the start of a data structure, and
mem_put instead of free when you are done with one of your list elements. If you have a linked list and you
wish to free all of them, use mem_put_list on the head of the linked list. When you're done with everything
you've created with that helper, call delete_mem and all memory you have allocated, plus the mem_helper
struct itself, will be freed.

3 temp_mem

If you want to create a bunch of objects using malloc and don't want to worry about freeing them all
individually, use the temp_mem struct and functions. There are only three functions:

struct temp_mem* setup_temp_mem(int length);
void* temp_malloc(size_t size,struct temp_mem *list);
void free_temp(struct temp_mem *list);

Start o� by calling setup_temp_mem with an argument that estimates the number of separate items you'll
be mallocing (the pointers will be stored on a stack_helper stack). Then, just use temp_malloc instead of
malloc, and when you're done with everything you've temp_malloc'ed, call free_temp. Simple!

4 counter_helper

The counter_helper struct and functions are a way to make a set (in the mathematical sense) out of a list
of items. In particular, counter_helper will �nd identical items and keep track of the number of that type
of item rather than storing each one individually. This numbering is kept track of in the counter_header
struct. The following functions are for use with counter_helper:

struct counter_helper* create_counter(int size,int length);
void counter_add(struct counter_helper *ch,void *data);
void counter_reset(struct counter_helper *ch);
struct counter_header* counter_iterator(struct counter_helper *ch);
struct counter_header* counter_next_entry(struct counter_header *c);
void counter_read(struct counter_helper *ch,struct counter_header *c,void *data);
void delete_counter(struct counter_helper *ch);

As usual, you start with create_counter and specify the size of your struct and the number of items to
allocate at once. (counter_helper uses mem_helper.) You can then add items using counter_add, where
the items will be binned into groups and counted as you go. This method copies the data from the individual
items. (This is implemented using linked lists and therefore is slow for large numbers of items! If you want
to throw away the items you've collected so far, use counter_reset.

Once you've added all the items you wish to (or before, if you please), you can traverse the counted set
of items by calling counter_iterator to point to the �rst item in the set (returns a counter_header as an
iterator), and then counter_next_entry on that iterator to get the next one. If you want to read out the
data stored at a particular location, use counter_read to copy the data in the counter into the pointer you
provide.

Finally, when you're done, delete_counter will delete the counter_helper and everything contained
within. None of the items you added will be deleted, since counter_helper creates copies of the data rather
than using the originals.

2


