/// @ref gtx_easing /// @file glm/gtx/easing.hpp /// @author Robert Chisholm /// /// @see core (dependence) /// /// @defgroup gtx_easing GLM_GTX_easing /// @ingroup gtx /// /// Include to use the features of this extension. /// /// Easing functions for animations and transitons /// All functions take a parameter x in the range [0.0,1.0] /// /// Based on the AHEasing project of Warren Moore (https://github.com/warrenm/AHEasing) #pragma once // Dependency: #include "../glm.hpp" #include "../gtc/constants.hpp" #include "../detail/qualifier.hpp" #ifndef GLM_ENABLE_EXPERIMENTAL # error "GLM: GLM_GTX_easing is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it." #endif #if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) # pragma message("GLM: GLM_GTX_easing extension included") #endif namespace glm{ /// @addtogroup gtx_easing /// @{ /// Modelled after the line y = x /// @see gtx_easing template GLM_FUNC_DECL genType linearInterpolation(genType const & a); /// Modelled after the parabola y = x^2 /// @see gtx_easing template GLM_FUNC_DECL genType quadraticEaseIn(genType const & a); /// Modelled after the parabola y = -x^2 + 2x /// @see gtx_easing template GLM_FUNC_DECL genType quadraticEaseOut(genType const & a); /// Modelled after the piecewise quadratic /// y = (1/2)((2x)^2) ; [0, 0.5) /// y = -(1/2)((2x-1)*(2x-3) - 1) ; [0.5, 1] /// @see gtx_easing template GLM_FUNC_DECL genType quadraticEaseInOut(genType const & a); /// Modelled after the cubic y = x^3 template GLM_FUNC_DECL genType cubicEaseIn(genType const & a); /// Modelled after the cubic y = (x - 1)^3 + 1 /// @see gtx_easing template GLM_FUNC_DECL genType cubicEaseOut(genType const & a); /// Modelled after the piecewise cubic /// y = (1/2)((2x)^3) ; [0, 0.5) /// y = (1/2)((2x-2)^3 + 2) ; [0.5, 1] /// @see gtx_easing template GLM_FUNC_DECL genType cubicEaseInOut(genType const & a); /// Modelled after the quartic x^4 /// @see gtx_easing template GLM_FUNC_DECL genType quarticEaseIn(genType const & a); /// Modelled after the quartic y = 1 - (x - 1)^4 /// @see gtx_easing template GLM_FUNC_DECL genType quarticEaseOut(genType const & a); /// Modelled after the piecewise quartic /// y = (1/2)((2x)^4) ; [0, 0.5) /// y = -(1/2)((2x-2)^4 - 2) ; [0.5, 1] /// @see gtx_easing template GLM_FUNC_DECL genType quarticEaseInOut(genType const & a); /// Modelled after the quintic y = x^5 /// @see gtx_easing template GLM_FUNC_DECL genType quinticEaseIn(genType const & a); /// Modelled after the quintic y = (x - 1)^5 + 1 /// @see gtx_easing template GLM_FUNC_DECL genType quinticEaseOut(genType const & a); /// Modelled after the piecewise quintic /// y = (1/2)((2x)^5) ; [0, 0.5) /// y = (1/2)((2x-2)^5 + 2) ; [0.5, 1] /// @see gtx_easing template GLM_FUNC_DECL genType quinticEaseInOut(genType const & a); /// Modelled after quarter-cycle of sine wave /// @see gtx_easing template GLM_FUNC_DECL genType sineEaseIn(genType const & a); /// Modelled after quarter-cycle of sine wave (different phase) /// @see gtx_easing template GLM_FUNC_DECL genType sineEaseOut(genType const & a); /// Modelled after half sine wave /// @see gtx_easing template GLM_FUNC_DECL genType sineEaseInOut(genType const & a); /// Modelled after shifted quadrant IV of unit circle /// @see gtx_easing template GLM_FUNC_DECL genType circularEaseIn(genType const & a); /// Modelled after shifted quadrant II of unit circle /// @see gtx_easing template GLM_FUNC_DECL genType circularEaseOut(genType const & a); /// Modelled after the piecewise circular function /// y = (1/2)(1 - sqrt(1 - 4x^2)) ; [0, 0.5) /// y = (1/2)(sqrt(-(2x - 3)*(2x - 1)) + 1) ; [0.5, 1] /// @see gtx_easing template GLM_FUNC_DECL genType circularEaseInOut(genType const & a); /// Modelled after the exponential function y = 2^(10(x - 1)) /// @see gtx_easing template GLM_FUNC_DECL genType exponentialEaseIn(genType const & a); /// Modelled after the exponential function y = -2^(-10x) + 1 /// @see gtx_easing template GLM_FUNC_DECL genType exponentialEaseOut(genType const & a); /// Modelled after the piecewise exponential /// y = (1/2)2^(10(2x - 1)) ; [0,0.5) /// y = -(1/2)*2^(-10(2x - 1))) + 1 ; [0.5,1] /// @see gtx_easing template GLM_FUNC_DECL genType exponentialEaseInOut(genType const & a); /// Modelled after the damped sine wave y = sin(13pi/2*x)*pow(2, 10 * (x - 1)) /// @see gtx_easing template GLM_FUNC_DECL genType elasticEaseIn(genType const & a); /// Modelled after the damped sine wave y = sin(-13pi/2*(x + 1))*pow(2, -10x) + 1 /// @see gtx_easing template GLM_FUNC_DECL genType elasticEaseOut(genType const & a); /// Modelled after the piecewise exponentially-damped sine wave: /// y = (1/2)*sin(13pi/2*(2*x))*pow(2, 10 * ((2*x) - 1)) ; [0,0.5) /// y = (1/2)*(sin(-13pi/2*((2x-1)+1))*pow(2,-10(2*x-1)) + 2) ; [0.5, 1] /// @see gtx_easing template GLM_FUNC_DECL genType elasticEaseInOut(genType const & a); /// @see gtx_easing template GLM_FUNC_DECL genType backEaseIn(genType const& a); /// @see gtx_easing template GLM_FUNC_DECL genType backEaseOut(genType const& a); /// @see gtx_easing template GLM_FUNC_DECL genType backEaseInOut(genType const& a); /// @param a parameter /// @param o Optional overshoot modifier /// @see gtx_easing template GLM_FUNC_DECL genType backEaseIn(genType const& a, genType const& o); /// @param a parameter /// @param o Optional overshoot modifier /// @see gtx_easing template GLM_FUNC_DECL genType backEaseOut(genType const& a, genType const& o); /// @param a parameter /// @param o Optional overshoot modifier /// @see gtx_easing template GLM_FUNC_DECL genType backEaseInOut(genType const& a, genType const& o); /// @see gtx_easing template GLM_FUNC_DECL genType bounceEaseIn(genType const& a); /// @see gtx_easing template GLM_FUNC_DECL genType bounceEaseOut(genType const& a); /// @see gtx_easing template GLM_FUNC_DECL genType bounceEaseInOut(genType const& a); /// @} }//namespace glm #include "easing.inl"