#! /usr/bin/perl # # hhmakemodel.pl # Generate a model from an output alignment of hhsearch. # Usage: hhmakemodel.pl -i file.out (-ts file.pdb|-al file.al) [-m int|-m name|-m auto] [-pdb pdbdir] # (C) Johannes Soeding 2012 # HHsuite version 3.0.0 (15-03-2015) # # Reference: # Remmert M., Biegert A., Hauser A., and Soding J. # HHblits: Lightning-fast iterative protein sequence searching by HMM-HMM alignment. # Nat. Methods, epub Dec 25, doi: 10.1038/NMETH.1818 (2011). # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with this program. If not, see . # We are very grateful for bug reports! Please contact us at soeding@mpibpc.mpg.de use lib $ENV{"HHLIB"}."/scripts"; use HHPaths; # config file with path variables for nr, blast, psipred, pdb, dssp etc. use strict; use Align; $|=1; # force flush after each print # Default parameters our $d=7; # gap opening penalty for Align.pm; more than 2 mismatches - 2 matches ## previously: 1 our $e=0.01; # gap extension penatlty for Align.pm; allow to leave large gaps bridging uncrystallized regions ## previously: 0.1 our $g=0.1; # endgap penalty for Align.pm; allow to shift SEQRES residues for uncrystallized aas to ends of alignment ## previously: 0.9 my $v=2; # 3: DEBUG my $formatting="CASP"; # CASP or LIVEBENCH my $servername="My server"; # my $MINRES=30; # minumum number of new query residues required for a hit to be used as additional parent my $infile=""; my $outfile=""; my $outformat="fas"; my $pickhits="1 "; # default: build one model from best hit my $Pthr=0; my $Ethr=0; my $Prob=0; my $shift=0; # ATTENTION: set to 0 as default! my $NLEN=14; # length of the name field in alignments of hhsearch-output my $NUMRES=100; # number of residues per line in FASTA, A2M, PIR format my $program=$0; # name of perl script my $usage=" hhmakemodel.pl from HHsuite $VERSION From the top hits in an hhsearch output file (hhr), you can * generate a MSA (multiple sequence alignment) containing all representative template sequences from all selected alignments (options -fas, -a2m, -a3m, -pir) * generate several concatenated pairwise alignments in AL format (option -al) * generate several concatenated coarse 3D models in PDB format (option -ts) In PIR, PDB and AL format, the pdb files are required in order to read the pdb residue numbers and ATOM records. The PIR formatted file can be used directly as input to the MODELLER homology modelling package. Usage: $program [-i] file.hhr [options] Options: -i results file from hhsearch with hit list and alignments -fas write a FASTA-formatted multiple alignment to file.fas -a2m write an A2M-formatted multiple alignment to file.a2m -a3m write an A3M-formatted multiple alignment to file.a3m -m [ ...] pick hits with specified indices (default='-m 1') -p minimum probability threshold (default=$Pthr) -e maximum E-value threshold (default=$Ethr) -q use the full-length query sequence in the alignment (not only the aligned part); the query alignment file must be in HHM, FASTA, A2M, or A3M format. -N use query name from hhr filename (default: use same name as in hhr file) -first include only first Q or T sequence of each hit in MSA -v verbose mode (default=$v) Options when database matches in hhr file are PDB or SCOP sequences -pir write a PIR-formatted multiple alignment to file.pir -ts write the PDB-formatted models based on *pairwise* alignments into file.pdb -al write the AL-formatted *pairwise* alignments into file.al -d directories containing the pdb files (for PDB, SCOP, or DALI sequences) (default=$pdbdir) -s shift the residue indices up/down by an integer (default=$shift); -CASP formatting for CASP (for -ts, -al options) (default: LIVEBENCH formatting) Options when query is compared to itself (for repeat detection) -conj include also conjugate alignments in MSA (with query and template exchanged) -conjs include conjugate alignments and sort by ascending diagonal value (i.e. i0-j0) \n"; # Options to help extract repeats from self-alignments: # 1. default 2. -conj 3. -conj_diag 4. -conj_compact # ABCD ABCD ---A ABCD # BCD- BCD- --AB BCDA # D--- CD-- -ABC CDAB # CD-- D--- ABCD DABC # ---A BCD- # --AB CD-- # -ABC D--- # Variable declarations my $line; # input line my $score=-1; # score of the best model; at the moment: Probability my $qname=""; # name of query from hhsearch output file (infile) my $tname=""; # name of template (hit) from hhsearch output file (infile) my $qnameline=""; # nameline of query my $tnameline; # nameline of template my $pdbfile; # name of pdbfile to read my $pdbcode; # four-letter pdb code in lower case and _A if chain A (e.g. 1h7w_A) my $aaq; # query amino acids from hhsearch output my @aaq; # query amino acids from hhsearch output my @qname; # query names in present alignment as returned from ReadAlignment() my @qfirst; # indices of first residues in present alignmet as returned from ReadAlignment() my @qlast; # indices of last residues in present alignmet as returned from ReadAlignment() my @qseq; # sequences of querys in present alignment as returned from ReadAlignment() my @tname; # template names in present alignment as returned from ReadAlignment() my @tfirst; # indices of first residues in present alignmet as returned from ReadAlignment() my @tlast; # indices of last residues in present alignmet as returned from ReadAlignment() my @tseq; # sequences of templates in present alignment as returned from ReadAlignment() my $aat; # template amino acids from hhsearch output my @aat; # template amino acids from hhsearch output my $aapdb; # template amino acids from pdb file my @aapdb; # template amino acids from pdb file my $qfirst=0; # first residue of query my $qlast=0; # last residue of query my $qlength; # length of query sequence my $tfirst=0; # first residue of template my $tlast=0; # first residue of template my $tlength; # length of template sequence my $l=1; # counts template residues from pdb file (first=1, like for i[col2] and j[col2] my $col1=0; # counts columns from hhsearch alignment my $col2=0; # counts columns from alignment (by function &AlignNW) of $aat versus $aapdb my @i1; # $i1[$col1] = index of query residue in column $col1 of hhsearch-alignment my @j1; # $j1[$col1] = index of template residue in column $col1 of hhsearch-alignment my @j2; # $j2[$col2] = index of hhsearch template seq in $col2 of alignment against pdb template sequence my @l2; # $l2[$col2] = index of pdb template seq in $col2 of alignment against hhsearch template sequence my @l1; # $l1[$col1] = $l2[$col2] my $res; # residue name my $chain; # pdb chain from template name my $qfile; # name of query sequence file (for -q option) my $qmatch; # number of match states in alignment my $hit; # index of hit in hit list my $k; # index of hit sorted by position in alignment with query (k=1,...,k=@first-2) my %picked=(); # $picked{$hit} is defined and =$k for hits that will be transformed into model my @remarks; my @printblock; # block 0: header block k: k'th hit my $keyword=""; # either METHOD for CASP format or REMARK for LIVEBENCH format my $conj=0; # include conjugate sequences? Sort in which way? my $conjugate=0; # when query is compared to itself: do not include conjugate alignments my $onlyfirst=0; # include only first representative sequence of each Q/T alignment my $dummy; # dummy my $addchain=1; # 1: PDB files contain chain-id as in 1abc_A.pdb (not 1abc.pdb or pdb1abc.pdb etc.) my $pdbdirs=$pdbdir; # default pdb directory with *.pdb files my $options=""; # Processing command line options if (@ARGV<1) {die $usage;} for (my $i=0; $i<@ARGV; $i++) {$options.=" $ARGV[$i] ";} # Set options if ($options=~s/ -i\s+(\S+) / /g) {$infile=$1;} if ($options=~s/ -q\s+(\S+) / /g) {$qfile=$1;} if ($options=~s/ -ts\s+(\S+) / /ig) {$outfile=$1; $outformat="TS";} if ($options=~s/ -pdb\s+(\S+) / /ig) {$outfile=$1; $outformat="TS";} if ($options=~s/ -al\s+(\S+) / /ig) {$outfile=$1; $outformat="AL";} if ($options=~s/ -pir\s+(\S+) / /ig) {$outfile=$1; $outformat="PIR";} if ($options=~s/ -fas\s+(\S+) / /ig) {$outfile=$1; $outformat="FASTA";} if ($options=~s/ -a2m\s+(\S+) / /ig) {$outfile=$1; $outformat="A2M";} if ($options=~s/ -a3m\s+(\S+) / /ig) {$outfile=$1; $outformat="A3M";} if ($options=~s/ -p\s+(\S+) / /g) {$Pthr=$1;} if ($options=~s/ -e\s+(\S+) / /g) {$Ethr=$1;} if ($options=~s/ -s\s+(\S+) / /g) {$shift=$1;} if ($options=~s/ -d\s+(([^-\s]\S*\s+)*)/ /g) {$pdbdirs=$1;} if ($options=~s/ -m\s+((\d+\s+)+)/ /g) {$pickhits=$1; } if ($options=~s/ -first\s+/ /ig) {$onlyfirst=1;} # Self-alignment options if ($options=~s/ -conj\s+/ /ig) {$conj=1;} if ($options=~s/ -conjs\s+/ /ig) {$conj=2;} # Switch formatting and method description if ($options=~s/ -CASP\s+/ /ig) {$formatting="CASP";} if ($options=~s/ -LIVEBENCH\s+/ /ig) {$formatting="LIVEBENCH";} if ($options=~s/ -server\s+(\S+)/ /g) {$servername=$1;} # Set verbose mode? if ($options=~s/ -v\s+(\d+) / /g) {$v=$1;} elsif ($options=~s/ -v\s+/ /g) {$v=1;} # Read infile and outfile if (!$infile && $options=~s/^\s*([^-]\S+)\s*/ /) {$infile=$1;} if (!$outfile && $options=~s/^\s*([^-]\S+)\s*/ /) {$outfile=$1;} if ($options=~s/ -N / /ig) { $qname=$infile; $qname=~s/^.*?([^\/]+)$/$1/; # remove path $qname=~s/^(.*)\.[^\.]*$/$1/; # remove extension $qnameline=$qname; } # Warn if unknown options found or no infile/outfile if ($options!~/^\s*$/) {$options=~s/^\s*(.*?)\s*$/$1/g; die("Error: unknown options '$options'\n");} if ($infile eq "") {die("$usage\nError in $program: input file missing: $!\n");} if ($outfile eq "") {die("$usage\nError in $program: output file missing: $!\n");} my @pdbdirs = split(/\s+/,$pdbdirs); # Find query name in input file open (INFILE, "<$infile") || die "Error in $program: Couldn't open $infile: $!\n"; while ($line=) { if ($v>=3) {print("$line");} if ($qname eq "" && $line=~/^Query:?\s*(\S+)(.*)/) {$qname=$1; $qnameline=$1.$2;} if ($line=~/^Match_columns:?\s*(\S+)/) {$qmatch=$1; last;} } if (!($line=)) {die ("Error in $program: wrong format in $infile: $!\n");} # Prepare hash %pick with indices of hits that will be transformed into model # No Hit Prob E-value P-value Score SS Cols Query HMM Template HMM # 1 153l Lysozyme (E.C.3.2.1.17) 100.0 0 0 381.0 19.4 185 1-185 1-185 (185) # 2 1qsa_A Soluble lytic transglyc 100.0 2.1E-39 2.5E-43 225.8 8.3 149 21-182 423-600 (618) # 3 1ltm 36 kDa soluble lytic tr 95.9 3.5E-06 4.1E-10 50.3 11.0 95 28-122 76-221 (320) # option '-m m1 m2 m3': pick models manually my @pickhits = split(/\s+/,$pickhits); $k=1; foreach $hit (@pickhits) { if (!defined $picked{$hit}) {$picked{$hit}=$k;} $k++; } if ($outformat eq "AL" || $outformat eq "TS") { &MakePairwiseAlignments(); } else { &MakeMultipleAlignment(); } exit; ################################################################################## # Construct AL or TS formatted alignment as a list of pairwise alignments ################################################################################## sub MakePairwiseAlignments() { # Scan through query-vs-template-alignments from infile and create first (combination) model $hit=0; # counts hits in hit list my $models=0; while ($line=) { if ($line=~/^>(\S+)/) { $hit++; if ($Pthr || $Ethr || defined $picked{$hit}) { # Found right alignment (hit) if (defined $picked{$hit}) {$k=$picked{$hit};} else {$k=$hit;} if ($line=~/^>(.*?)\s+E=.*$/) { $line=$1; # remove E=1.3E-30 etc. at the end } else { $line=~/^>(.*)/; $line=$1; } my $nameline=$line; my $evalue; $line=; if ($line=~/Probab\s*=\s*(\S+).*E-value\s*=\s*(\S+)/) {$score=$1; $evalue=$2} else {$score=0; warn("WARNING: could not print score $line");} if ($line=~/Aligned_cols=\s*(\S+)/) {;} else {warn("WARNING: could not find aligned_cols\n");} if ($Pthr && $score<$Pthr) {last;} # Probability too low -> finished if ($Ethr && $evalue>$Ethr) {last;} # Evalue too high > finished # Commented out in CASP format if ($formatting eq "LIVEBENCH") { $printblock[$k] ="PFRMAT $outformat\n"; $printblock[$k].="TARGET $qname\n"; } $remarks[$k]="REMARK $k: $nameline\n"; $remarks[$k].="REMARK $line"; &ReadAlignment(); $qfirst = $qfirst[0]; $qlast = $qlast[0]; $aaq = $qseq[0]; $tfirst = $tfirst[0]; $aat = $tseq[0]; $tname = $tname[0]; if ($v>=3) { for (my $i=0; $i<@qfirst; $i++) { printf("Q %-14.14s %s\n",$qname[$i],$qseq[$i]); } printf("\n"); for (my $i=0; $i<@tfirst; $i++) { printf("T %-14.14s %s\n",$tname[$i],$tseq[$i]); } printf("\n"); } # Extract pdbcode and construct name of pdbfile and return in global variables $pdbid and $chain if (&ExtractPdbcodeAndChain($tname[0])) {next;} if ($chain eq "[A ]") {$pdbcode.="_A";} elsif ($chain eq ".") {;} else {$pdbcode.="_$chain";} # Read score (=probability) $printblock[$k].="REMARK $nameline\n"; $printblock[$k].="REMARK $line"; $printblock[$k].="SCORE $score\n"; $printblock[$k].="PARENT $pdbcode\n"; $printblock[$k].="MODEL $k\n"; &WritePairwiseAlignments(); $printblock[$k].="END\n"; $models++; } } } $k=$#printblock; # set $k to last index in @printblock if ($k<0) { $printblock[1]="PARENT NONE\nTER\n"; $printblock[1].="END\n"; if ($v>=1) {print("WARNING: no hits found for model!\n");} } close (INFILE); if ($v>=2) { printf("$models models built\n"); } # Write model file header #---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 # Print header my $date = scalar(localtime); if ($formatting eq "CASP") { $printblock[0]="PFRMAT $outformat\n"; $printblock[0].="TARGET $qname\n"; } $printblock[0].="REMARK AUTHOR $servername\n"; $printblock[0].="REMARK $date\n"; # $printblock[0].="REMARK J. Soeding \n"; # Add remarks for ($k=0; $k<@remarks; $k++) { if (defined $remarks[$k]) { $printblock[0].=$remarks[$k]; } } $printblock[0].="REMARK \n"; # Print @printblock into outfile open (OUTFILE, ">$outfile") || die "Error in $program: Couldn't open $outfile: $!\n"; foreach my $printstr (@printblock) { my @printarr=split(/\n/,$printstr); if ($outformat eq "TS") { foreach $printstr (@printarr) { printf(OUTFILE "%-80.80s\n",$printstr); } } else { foreach $printstr (@printarr) { printf(OUTFILE "%s\n",$printstr); } } } close (OUTFILE); if ($outformat eq "TS") { # Call MaxSprout to generate sidechains } return; } ################################################################################## # Construct multiple alignment in FASTA, A2M, or PIR format ################################################################################## sub MakeMultipleAlignment() { my @hitnames=(); # $hitnames[$k] is the nameline of the ihit'th hit my @hitseqs=(); # $hitseqs[$k] contains the residues of the ihit'th hit my @hitdiag=(); # $hitdiag[$k] = $qfirst[0]-$tfirst[0] my @conjnames=(); # $hitnames[$k] is the nameline of the ihit'th conjugate hit my @conjseqs=(); # $hitseqs[$k] contains the residues of the ihit'th conjugate hit my @conjdiag=(); # $hitdiag[$k] = $qfirst[0]-$tfirst[0] for conjugate alignments my $new_hit; # residues of new hit my $i; # residue index my $j; # residue index my $k; # sequence index $hitnames[0]=""; $hitseqs[0]=""; $hitdiag[0]=0; $conjnames[0]=""; $conjseqs[0]=""; $conjdiag[0]=0; open (INFILE, "<$infile") || die "Error in $program: Couldn't open $infile: $!\n"; $hit=0; # counts hits in hit list # Read one alignment after the other while ($line=) { # Found new aligment if ($line=~/^>(\S+)/) { $hit++; # Is alignment selected by user? if ($Pthr || $Ethr || defined $picked{$hit}) { if ($line=~/^>(\S+)(.*)/) {$tname=$1; $tnameline=$1.$2;} else {die("\nError: bad format in $infile, line $.: code 1\n");} $line = ; if ($line=~/Probab\s*=\s*(\S+).*E-value\s*=\s*(\S+)/) { if ($Pthr && $1<$Pthr) {last;} # Probability too low -> finished if ($Ethr && $2>$Ethr) {last;} # Evalue too high > finished } else { die("\nError: bad format in $infile, line $.: code 2\n"); } # Read next alignment with $aaq, $qfirst, @tseq, @first, and @tname &ReadAlignment(); chomp($tnameline); if ($tnameline=~/\S+\s+(.*)/) {$tname[0].=" $1";} # template seed sequence gets its description # Format sequences into @hitseqs and @hitnames &FormatSequences(\@hitnames,\@hitseqs,\@hitdiag,\@qname,\@qseq,\@qfirst,\@qlast,\$qlength,\@tname,\@tseq,\@tfirst,\@tlast,\$tlength); # Use conjugate alignments? if ($conj>0) { &FormatSequences(\@conjnames,\@conjseqs,\@conjdiag,\@tname,\@tseq,\@tfirst,\@tlast,\$tlength,\@qname,\@qseq,\@qfirst,\@qlast,\$qlength); } } # end: if ($Pthr>0 || defined $picked{$hit}) } # end: if ($line=~/^>(\S+)/) # found new alignment } # end while close (INFILE); # Insert full-length query sequence? if ($qfile) { $hitseqs[0]=""; open (QFILE, "<$qfile") || die "Error in $program: Couldn't open $qfile: $!\n"; while ($line=) { if ($line=~/^>/ && $line!~/^>ss_/ && $line!~/^>sa_/ && $line!~/^>aa_/ && $line!~/^>Consensus/) {last;} } while ($line=) { if ($line=~/^>/ || $line=~/^\#/) {last;} $line=~tr/\n\.-//d; $line=~tr/a-z/A-Z/; $hitseqs[0].=$line; } close(QFILE); if ($v>=2) {printf("\nQ(full) %-14.14s %s\n",$qname,$hitseqs[0]);} } # DEBUG if ($v>=3) { printf("\nQuery %-14.14s %s\n",$qname,$hitseqs[0]); for ($k=1; $k<@hitnames; $k++) { printf("T hit %3i %-14.14s %s\n",$k,$hitnames[$k],$hitseqs[$k]); } printf("\n"); printf("\nQuery %-14.14s %s\n",$qname,$conjseqs[0]); for ($k=1; $k<@conjnames; $k++) { printf("T conj %3i %-14.14s %s\n",$k,$conjnames[$k],$conjseqs[$k]); } printf("\n"); } # Include conjugate sequences? if ($conj>0) { shift(@conjseqs); # delete zeroth ("query") sequence of @conjseqs shift(@conjnames); # shift(@conjdiag); # # Sort by diagonals $hitdiag[], $conjdiag[] &Sort(\@hitdiag,\@hitseqs,\@hitnames); &Sort(\@conjdiag,\@conjseqs,\@conjnames); # Append conjugate sequences to hitseqs splice(@hitseqs,scalar(@hitseqs),0,@conjseqs); splice(@hitnames,scalar(@hitnames),0,@conjnames); if ($v>=3) { printf("\nQuery %-14.14s %s\n",$qname,$hitseqs[0]); for ($k=1; $k<@hitnames; $k++) { chomp($hitnames[$k]); printf("T tot %3i %-14.14s %s\n",$k,$hitnames[$k],$hitseqs[$k]); $hitnames[$k].="\n"; } } } # Insert gaps: my @len_ins; # $len_ins[$j] will count the maximum number of inserted residues after match state $j. my @inserts; # $inserts[$j] contains the insert (in small case) of sequence $k after the $j'th match state my $insert; my $ngap; # For each match state determine length of LONGEST insert after this match state and store in @len_ins for ($k=0; $k<@hitnames; $k++) { # split into list of single match states and variable-length inserts # ([A-Z]|-) is the split pattern. The parenthesis indicate that split patterns are to be included as list elements # The '#' symbol is prepended to get rid of a perl bug in split $j=0; @inserts = split(/([A-Z]|-)/,"#".$hitseqs[$k]."#"); # printf("Sequence $k: $hitseqs[$k]\n"); # printf("Sequence $k: @inserts\n"); foreach $insert (@inserts) { if( !defined $len_ins[$j] || length($insert)>$len_ins[$j]) { $len_ins[$j]=length($insert); } $j++; # printf("$insert|"); } # printf("\n"); } # After each match state insert residues and fill up with gaps to $len_ins[$i] characters for ($k=0; $k<@hitnames; $k++) { # split into list of single match states and variable-length inserts @inserts = split(/([A-Z]|-)/,"#".$hitseqs[$k]."#"); $j=0; # append the missing number of gaps after each match state foreach $insert (@inserts) { if($outformat eq "FASTA") { for ($i=length($insert); $i<$len_ins[$j]; $i++) {$insert.="-";} } else { for ($i=length($insert); $i<$len_ins[$j]; $i++) {$insert.=".";} } $j++; } $hitseqs[$k] = join("",@inserts); $hitseqs[$k] =~ tr/\#//d; # remove the '#' symbols inserted at the beginning and end } # Remove columns at beginning and end with gaps in all sequences my $remove_start; my $remove_end; my $len; $hitseqs[0]=~/^(-*)/; $remove_start=length($1); $hitseqs[0]=~/(-*)$/; $remove_end=length($1); for ($k=0; $k<@hitnames; $k++) { $hitseqs[$k]=~s/^.{$remove_start}(.*).{$remove_end}/$1/; } $len=($hitseqs[0]=~tr/a-zA-Z/a-zA-Z/); # Prepare name line of query if ($outformat eq "PIR") { my $qnametmp=$qname; $qnametmp=~tr/:/;/; $qnameline=~/^\S+\s*(.*)/; my $qnamelinetmp=$1; $qnamelinetmp=~tr/:/;/; $hitnames[0] = sprintf(">P1;%s\nsequence:%s:%4i: :%4i: :%s: : 0.00: 0.00\n",$qnametmp,$qnametmp,$remove_start+1,$len+$remove_start,$qnamelinetmp); } else { # outformat is "FASTA" or "A2M" or "A3M" or ... $hitnames[0] = ">$qnameline\n"; } # If pretty diagonally sorted order is wanted... if ($conj>0) { if ($conj==2) { my $center = 0.5*(scalar(@hitseqs)-1); @conjseqs = splice(@hitseqs,$center+1,$center); splice(@hitseqs,0,0,@conjseqs); @hitseqs = reverse(@hitseqs); @conjnames = splice(@hitnames,$center+1,$center); splice(@hitnames,0,0,@conjnames); @hitnames = reverse(@hitnames); # Shorten namelines of all but first sequence my %count; for ($k=0; $k<@hitnames; $k++) { if ($k==$center) {$k++;} $hitnames[$k]=~/(\S{1,14})/; if (!defined $count{$1}) {$count{$1}=0;} my $count = ++$count{$1}; # printf("vorher: %s ",$hitnames[$k]); $hitnames[$k]=~s/^(\S{1,14}).*/$1:$count/; # printf("nachher: %s\n",$hitnames[$k]); } } else { for ($k=0; $k<@hitnames; $k++) {$hitnames[$k]=">$qname\n";} } } # Remove gaps? Captialize? if ($outformat eq "PIR") { for ($k=0; $k<@hitnames; $k++) { $hitseqs[$k].="*";; # Transform to upper case $hitseqs[$k]=~tr/a-z./A-Z-/; # Transform to upper case $hitseqs[$k]=~s/(.{1,$NUMRES})/$1\n/g; # insert newlines every NUMRES positions } } elsif ($outformat eq "FASTA") { for ($k=0; $k<@hitnames; $k++) { $hitseqs[$k]=~tr/a-z./A-Z-/; # Transform to upper case $hitseqs[$k]=~s/(.{1,$NUMRES})/$1\n/g; # insert newlines every NUMRES positions } } elsif ($outformat eq "A2M") { for ($k=0; $k<@hitnames; $k++) {$hitseqs[$k]=~s/(.{1,$NUMRES})/$1\n/g;} # insert newlines every NUMRES positions } elsif ($outformat eq "A3M") { for ($k=0; $k<@hitnames; $k++) {$hitseqs[$k]=~tr/.//d;$hitseqs[$k].="\n";} # Remove gaps aligned to inserts } # Write sequences into output file open (OUTFILE, ">$outfile") || die ("cannot open $outfile:$!"); for ($k=0; $k<@hitnames; $k++) { print(OUTFILE "\n$hitnames[$k]$hitseqs[$k]"); } close OUTFILE; if ($v>=2) { printf("%i sequences written to $outfile\n",scalar(@hitnames)); } } # Format sequences into @hitseqs and @hitnames # & Call with FormatSequences(\@hitnames,\@hitseqs,\@qname,\@qseq,\@qfirst,\@qlast,\$qlength,\@tname,\@tseq,\@tfirst,\@tlast,\$tlength); sub FormatSequences() { my $p_hitnames = $_[0]; # typeglob to $hitname my $p_hitseqs = $_[1]; # ... my $p_hitdiag = $_[2]; # ... my $p_qname = $_[3]; # my $p_qseq = $_[4]; # my $p_qfirst = $_[5]; # my $p_qlast = $_[6]; # my $p_qlength = $_[7]; # my $p_tname = $_[8]; # my $p_tseq = $_[9]; # my $p_tfirst = $_[10]; # my $p_tlast = $_[11]; # my $p_tlength = $_[12]; # my $i; if ($v>=2) { if (defined $picked{$hit}) { print("hit=$hit picked=$picked{$hit} tname=$tname[0]"); } else { print("hit=$hit picked=evalue<$Ethr tname=$tname[0]"); } for (my $i=1; $i<@{$p_tname}; $i++) { print(", $tname[$i]"); } print("\n"); } my $qfirst = ${$p_qfirst}[0]; my $qlast = ${$p_qlast}[0]; my $qlength = ${$p_qlength}; my $aaq = ${$p_qseq}[0]; @aaq = unpack("C*",$aaq); # needed for transforming template sequences into a3m based on query residues (NOT HMM match states!) $aaq=~tr/.-//d; # remove all gaps from query sequence # For all template sequences in the present alignment for (my $k=0; $k<@{$p_tname}; $k++) { $tname =${$p_tname}[$k]; $tfirst=${$p_tfirst}[$k]; $aat =${$p_tseq}[$k]; # Transform template residues into a3m format: # match states are those where query has residue (NOT where HMM has match state!) # This makes sense since we want to build a model for the query sequence. @aat = unpack("C*",$aat); $aat=""; # Transform all columns with residue in query into match/delete states, all others to inserts for ($i=0; $i=2) { printf("\nQ %-14.14s %s\n",$qname,$aaq); printf("T %-14.14s %s\n",$tname,$aat); } # Outformat is PIR? => read residues and indices from PDB ATOM records if ($outformat eq "PIR") { # Extract pdbcode and construct name of pdbfile and return in global variables $pdbid and $chain if (&ExtractPdbcodeAndChain($tname)) {next;} # Read sequence from pdb file if (!open (PDBFILE, "$pdbfile")) { die ("Error in $program: Couldn't open $pdbfile: $!\n"); } $aapdb=""; $l=0; my @nres; # $nres[$l] = pdb residue index for residue $aapdb[$l] my $nres=-1e6; my $resolution=-1.00; my $rvalue=-1.00; while ($line=) { if ($line=~/^REMARK.*RESOLUTION\.\s+(\d+\.?\d*)/) {$resolution=$1;} if ($line=~/^REMARK.*R VALUE\s+\(WORKING SET\)\s+:\s+(\d+\.?\d*)/) {$rvalue=$1;} if ($line=~/^ENDMDL/) {last;} # if file contains NMR models read only first one if (($line=~/^ATOM\s+\d+ .. [ A](\w{3}) $chain\s*(-?\d+.)/ || ($line=~/^HETATM\s+\d+ .. [ A](\w{3}) $chain\s*(-?\d+.)/ && &Three2OneLetter($1) ne "X") ) && $2 ne $nres ) { $res=$1; $nres=$2; $nres[$l]=$2; $res=&Three2OneLetter($res); $aapdb[$l++]=$res; $aapdb.=$res; } } close (PDBFILE); if (length($aapdb)<=0) {die("Error: chain $chain not found in pdb file $pdbfile\n");} # Align template in hh-alignment ($aat) with template sequence in pdb ($aapdb) my $xseq=$aat; $xseq=~tr/-/~/; # transform Deletes to '~' to distinguish them from gaps '-' inserted by Align.pm my $yseq=$aapdb; my ($jmin,$jmax,$lmin,$lmax); my $Sstr; my $score; # The aligned characters are returend in $j2[$col2] and $l2[$col2] $score=&AlignNW(\$xseq,\$yseq,\@j2,\@l2,\$jmin,\$jmax,\$lmin,\$lmax,\$Sstr); # DEBUG if ($v>=3) { printf("Template (hh) $xseq\n"); printf("Identities $Sstr\n"); printf("Template (pdb) $yseq\n"); printf("\n"); if ($v>=4) { for ($col2=0; $col2<@l2 && $col2<1000; $col2++) { printf("%3i %3i:%s %3i:%s -> %i\n",$col2,$j2[$col2],substr($aat,$j2[$col2]-1,1),$l2[$col2],substr($aapdb,$l2[$col2]-1,1),$nres[$l2[$col2]-1]); } } } # check for reasonable alignment my $num_match = 0; for ($i=0; $i<@l2; $i++) { if ($j2[$i] > 0 && $l2[$i] > 0) { $num_match++; } } if (($score/$num_match) < 1) { print "WARNING! Match score with PDBfile (score: $score num: $num_match score/num:".($score/$num_match).") to low => $pdbfile not included!\n"; next; } # Assign a3m-formatted amino acid sequence from pdb file to $aapdb $aapdb=""; my @xseq=unpack("C*",$xseq); my @yseq=unpack("C*",$yseq); for ($i=0; $i<@yseq; $i++) { if(($xseq[$i]>=65 && $xseq[$i]<=90) || $xseq[$i]==ord('~')) { # if $aat has upper case residue or Delete state # Match state $aapdb.=uc(chr($yseq[$i])); } else { # Insert state if ($yseq[$i]!=45) {$aapdb.=lc(chr($yseq[$i]));} # add only if not a gap '-' } } # Remove overlapping ends of $aapdb $aapdb=~s/^[a-z]*(.*?)[a-z]*$/$1/; # Glue gaps at beginning and end of aligned pdb sequence and add sequence to alignment push (@{$p_hitseqs}, ("-" x ($qfirst-1)).$aapdb.("-" x ($qlength-$qlast)) ); # use ATOM record residues $aapdb! # Write hitname in PIR format into @hitnames my $descr; my $organism; my $struc=$pdbcode; if ($tnameline=~/^(\S+)\s+(.*)/) {$descr=$2; $descr=~tr/://d;} else {$descr=" ";} if ($tnameline=~/^(\S+)\s+.*\s+\{(.*)\}/) {$organism=$2;} else {$organism=" ";} if (length($chain)>1 || $chain eq ".") { # MODELLER's special symbol for 'chain unspecified' $chain="."; } elsif ($addchain && $chain ne " ") { $struc.="_$chain"; } # push (@{$p_hitnames}, sprintf(">P1;%s\nstructureX:%4s:%4i:%1s:%4i:%1s:%s:%s:%-.2f:%-.2f\n",$struc,$struc,$nres[$lmin-1],$chain,$nres[$lmax-1],$chain,$descr,$organism,$resolution,$rvalue) ); my $descrtmp=$descr; $descrtmp=~tr/:/;/; $organism=~tr/://d; push (@{$p_hitnames}, sprintf(">P1;%s\nstructureX:%4s: :%1s: :%1s:%s:%s:%-.2f:%-.2f\n",$struc,$struc,$chain,$chain,$descrtmp,$organism,$resolution,$rvalue) ); push (@{$p_hitdiag}, $tfirst-$qfirst); } else { # outformat is "FASTA" or "A2M" or "A3M" or ... # Write hitname in FASTA format into @hitnames push (@{$p_hitseqs}, ("-" x ($qfirst-1)).$aat.("-" x ($qlength-$qlast)) ); push (@{$p_hitnames}, ">$tname\n" ); push (@{$p_hitdiag}, $tfirst-$qfirst); } if ($onlyfirst>0) {last;} # extract only first (seed?) sequence in each alignment } # end: for (my $k=0; $k<@{$tname}; $k++) # Paste aligned subsequence of query over $hitseqs[0] if (${$p_hitseqs}[0] eq "") {${$p_hitseqs}[0] = "-" x $qlength;} if (!$qfile) {substr(${$p_hitseqs}[0],$qfirst-1,length($aaq),$aaq);} return; } ################################################################################## # Read Alignment from infile (*.hhr file) # Results: # $aaq: query residues in present alignment # $qfirst: index of first query residue in present alignment # @tname: template names in present alignmen # @tfirst: indices of first residues in present alignmet # @tseq: sequences of templates in present alignment ################################################################################## sub ReadAlignment() { @qname=(); # name of $it'th query in this alignment @qfirst=(); # index of first residue in $it'th query in this alignment @qlast=(); # index of last residue in $it'th query in this alignment @qseq=(); # residues of $it'th query in this alignment @tname=(); # name of $it'th template in this alignment @tfirst=(); # index of first residue in $it'th template in this alignment @tlast=(); # index of last residue in $it'th template in this alignment @tseq=(); # residues of $it'th template in this alignment if ($v>=3) {printf("Searching for Q $qname vs T $tname\n");} $line=; # Search for first line beginning with Q ot T and not followed by aa_, ss_pred, ss_conf, or Consensus while (1) { my $i; # index for query sequence in this alignment # Scan up to first line starting with Q; stop when line 'No\s+\d+' or 'Done' is found while (defined $line && $line!~/^Q\s(\S+)/) { if ($line=~/^No\s+\d/ || $line=~/^Done/) {last;} $line=; next; } if (!defined $line || $line=~/^No\s+\d/ || $line=~/^Done/) {last;} # Scan up to first line that is not secondary structure line or consensus line while (defined $line && $line=~/^Q\s+(ss_|sa_|aa_|Consens|Cons-)/) {$line=;} # Read next block of query sequences $i=0; while ($line=~/^Q\s+/) { if ($line!~/^Q\s+(ss_|sa_|aa_|Consens|Cons-)/ && $line=~/^Q\s*(\S+)\s+(\d+)\s+(\S+)\s+(\d+)\s+\((\d+)/) { $qname[$i]=$1; if (!$qfirst[$i]) {$qfirst[$i]=$2;} # if $qfirst is undefined then this is the first alignment block -> set $qfirst to $1 if (!$qseq[$i]) {$qseq[$i]=$3;} else {$qseq[$i].=$3;} $qlast[$i]=$4; if ($i==0) {$qlength=$5} $i++; } $line=; } if ($i==0) { die("\nError in $program: bad format in $infile, line $.: query block\n"); } # Scan up to first line starting with T while (defined $line && $line!~/^T\s+(\S+)/) {$line=;} # Scan up to first line that is not secondary structure line or consensus line while (defined $line && $line=~/^T\s+(ss_|sa_|aa_|Consens|Cons-)/) {$line=;} # Read next block of template sequences $i=0; while ($line=~/^T\s+/) { if ($line!~/^T\s+(ss_|sa_|aa_|Consens|Cons-)/ && $line=~/^T\s*(\S+)\s+(\d+)\s+(\S+)\s+(\d+)\s+\((\d+)/){ $tname[$i]=$1; if (!$tfirst[$i]) {$tfirst[$i]=$2;} # if $tfirst is undefined then this is the first alignment block -> set $tfirst to $1 if (!$tseq[$i]) {$tseq[$i]=$3;} else {$tseq[$i].=$3;} $tlast[$i]=$4; if ($i==0) {$tlength=$5} $i++; } $line=; } if ($i==0) { die("\nError in $program: bad format in $infile, line $.: template block\n"); } } # end while ($line=) # if (!$qfirst) {$qfirst=1;} # if still $qfirst==0 then set $qfirst to 1 # for (my $i=0; $i<@tfirst; $i++) { # if (!$tfirst[$i]) {$tfirst[$i]=1;} # if still $tfirst[$i]==0 then set $tfirst to 1 # } # Check lengths if (length($qseq[0])!=length($tseq[0])) { print("\nError: query and template lines do not have the same length in $infile, line $.\n"); for (my $i=0; $i<@qfirst; $i++) { printf("Q %-14.14s %s\n",$qname[$i],$qseq[$i]); } printf("\n"); for (my $i=0; $i<@tfirst; $i++) { printf("T %-14.14s %s\n",$tname[$i],$tseq[$i]); } printf("\n"); exit 1; } if ($v>=3) { for (my $i=0; $i<@qfirst; $i++) { printf("Q %-14.14s %s\n",$qname[$i],$qseq[$i]); } printf("\n"); for (my $i=0; $i<@tfirst; $i++) { printf("T %-14.14s %s\n",$tname[$i],$tseq[$i]); } printf("\n"); } return; } ################################################################################## # Write Alignment to $printblock[$k] ################################################################################## sub WritePairwiseAlignments() { #Delete columns with gaps in both sequences $aaq=uc($aaq); $aat=uc($aat); @aaq=split(//,$aaq); @aat=split(//,$aat); my $col=0; for ($col1=0; $col1<@aaq; $col1++) { if ($aaq[$col1]=~tr/a-zA-Z/a-zA-Z/ || $aat[$col1]=~tr/a-zA-Z/a-zA-Z/) { $aaq[$col]=$aaq[$col1]; $aat[$col]=$aat[$col1]; $col++; } } splice(@aaq,$col); # delete end of @aaq; splice(@aat,$col); $aaq=join("",@aaq); $aat=join("",@aat); # Count query and template residues into @i1 and @j1 for ($col1=0; $col1<@aaq; $col1++) { if ($aaq[$col1]=~tr/a-zA-Z/a-zA-Z/) { $i1[$col1]=$qfirst++; #found query residue in $col1 } else { $i1[$col1]=0; #found gap in $col1 } if ($aat[$col1]=~tr/a-zA-Z/a-zA-Z/) { $j1[$col1]=$tfirst++; #found template residue in $col1 } else { $j1[$col1]=0; #found gap in $col1 } } # DEBUG if ($v>=3) { printf ("col Q i1 T j1\n"); for ($col1=0; $col1<@aaq; $col1++) { printf ("%3i %s %3i %s %3i\n",$col1,$aaq[$col1],$i1[$col1],$aat[$col1],$j1[$col1]); } printf ("\n"); } # Read protein chain from pdb file # ----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 # ATOM 1 N SER A 27 38.637 79.034 59.693 1.00 79.70 # ATOM 2083 CD1 LEU A 22S 15.343 -12.020 43.761 1.00 5.00 C # Extract pdbcode and construct name of pdbfile and return in global variables $pdbid and $chain if (&ExtractPdbcodeAndChain($tname)) {next;} # Read sequence from pdb file if (! defined $pdbfile) {die ("Error in $program: Couldn't find pdb code in $tname\n");} open (PDBFILE, "$pdbfile") || die ("Error in $program: Couldn't open $pdbfile: $!\n"); if ($chain eq "[A ]") {$pdbcode.="_A";} elsif ($chain eq ".") {;} else {$pdbcode.="_$chain";} $aapdb=""; $l=1; $line=; while ($line) {if ($line=~/^ATOM/) {last;} $line=;} # advance to ATOM records my @nres; # $nres[$l] = pdb residue index for residue $aapdb[$l] my @coord; # $coord[$l] = coordinates of CA atom of residue $aapdb[$l] while ($line) { if ($line=~/^ATOM\s+\d+ CA [ AB](\w{3}) $chain\s*(-?\d+.) (\s*\S+\s+\S+\s+\S+)/ || ($line=~/^HETATM\s+\d+ CA [ AB](\w{3}) $chain\s*(-?\d+.) (\s*\S+\s+\S+\s+\S+)/ && &Three2OneLetter($1) ne "X") ) { $res=$1; $nres[$l]=$2; $coord[$l]=$3." 1.00"; $res=&Three2OneLetter($res); $aapdb[$l]=$res; $aapdb.=$res; $l++; } elsif ($l>10 && $line=~/^ATOM\s+\d+ CA/) {last;} elsif ($line=~/^ENDMDL/) {last;} # if file contains NMR models read only first one $line=; } close (PDBFILE); # Align template in hh-alignment ($aat) with template sequence in pdb ($aapdb) my $xseq=$aat; my $yseq=$aapdb; my ($jmin,$jmax,$lmin,$lmax); my $Sstr; my $score; $xseq=~tr/-/~/d; # transform Deletes to '~' to distinguish them from gaps inserted by Align.pm #the aligned characters are returend in $j2[$col2] and $l2[$col2] if ($v>=3) { printf("Template (hh) $xseq\n"); printf("Identities $Sstr\n"); printf("Template (pdb) $yseq\n"); printf("\n"); } $score=&AlignNW(\$xseq,\$yseq,\@j2,\@l2,\$jmin,\$jmax,\$lmin,\$lmax,\$Sstr); # DEBUG if ($v>=3) { printf("Template (hh) $xseq\n"); printf("Identities $Sstr\n"); printf("Template (pdb) $yseq\n"); printf("\n"); if ($v>=4) { for ($col2=0; $col2<@l2 && $col2<200; $col2++) { printf("%3i %3i %3i\n",$col2,$j2[$col2],$l2[$col2]); } } } # DEBUG # Construct alignment of $aaq <-> $aapdb via alignments $aaq <-> $aat and $aat <-> $aapdb: # Find $l1[$col1] = line of pdb file corresponding to residue $aat[$col1] and $aaq[$col1] $col2=0; for ($col1=0; $col1<@aaq; $col1++) { if ($j1[$col1]==0 || $i1[$col1]==0) {$l1[$col1]=0; next;} # skip gaps in query and gaps in template while ($j2[$col2]<$col1+1) {$col2++;} # in $j2[col2] first index is 1, in $col1 first column is 0 $l1[$col1] = $l2[$col2]; if ($v>=4) {printf("l1[%i]=%i l2[%i]=%i\n",$col1,$l1[$col1],$col2,$l2[$col2]);} } if ($pdbcode ne "NONE") { if ($outformat eq "TS") { for ($col1=0; $col1<@aat; $col1++) { if ($i1[$col1]==0) {next;} # skip gaps in query if ($j1[$col1]==0) {next;} # skip gaps in template sequence if ($l1[$col1]==0) {next;} # skip if corresponding residue was skipped in pdb file $printblock[$k].=sprintf("ATOM %5i CA %3s %4i %-50.50s\n",$i1[$col1],&One2ThreeLetter($aaq[$col1]),$i1[$col1]+$shift,$coord[$l1[$col1]]); if ($v>=4) { printf("ATOM %5i CA %3s %4i %-50.50s\n",$i1[$col1],&One2ThreeLetter($aaq[$col1]),$i1[$col1]+$shift,$coord[$l1[$col1]]); } } } else { for ($col1=0; $col1<@aat; $col1++) { if ($i1[$col1]==0) {next;} # skip gaps in query if ($j1[$col1]==0) {next;} # skip gaps in template sequence if ($l1[$col1]==0) {next;} # skip if corresponding residue was skipped in pdb file $printblock[$k].=sprintf("%1s %3i %1s %s\n",$aaq[$col1],$i1[$col1],$aat[$col1],$nres[$l1[$col1]]); if ($v>=4) {printf("%1s %3i %1s %s\n",$aaq[$col1],$i1[$col1],$aat[$col1],$nres[$l1[$col1]]);} } } } $printblock[$k].=sprintf("TER\n"); return; } # Extract pdbcode and construct name of pdbfile and return in global variables $pdbid and $chain sub ExtractPdbcodeAndChain() { my $name=$_[0]; $name=~/^(\S+)/; $name=$1; # SCOP ID? (d3lkfa_,d3grs_3,d3pmga1,g1m26.1) if ($name=~/^[defgh](\d[a-z0-9]{3})([a-z0-9_.])[a-z0-9_]$/) { $pdbcode=$1; if ($2 eq "_") {$chain="[A ]";} else {$chain=uc($2);} } # PDB ID? (8fab, 1a0i) elsif ($name=~/^(\d[a-z0-9]{3})$/) { $pdbcode=$1; $chain="[A ]"; } # PDB ID? (8fab_A) elsif ($name=~/^(\d[a-z0-9]{3})_(\S)$/) { $pdbcode=$1; $chain=$2; } # PDB ID? (1u1z_ABC) elsif ($name=~/^(\d[a-z0-9]{3})_(\S\S+)$/) { $pdbcode=$1; $chain="[$2]"; } # DALI ID? (8fabA_0,1a0i_2) elsif ($name=~/^(\d[a-z0-9]{3})([A-Za-z0-9]?)_\d+$/) { $pdbcode=$1; $chain=$2; } else { $pdbcode=$name; $chain="A"; # return 1; # no SCOP/DALI/pdb sequence } $pdbfile = &FindPDBfile($pdbcode, $chain); if ($pdbfile eq "") { if ($v>=2) {print("Warning: no pdb file found for sequence name '$name'\n");} return 1; } return 0; } # Resort arrays according to sorting array0: # Resort(\@array0,\@array1,...,\@arrayN) sub Sort() { my $p_array0 = $_[0]; my @index=(); for (my $i=0; $i<@{$p_array0}; $i++) {$index[$i]=$i;} @index = sort { ${$p_array0}[$a] <=> ${$p_array0}[$b] } @index; foreach my $p_array (@_) { my @dummy = @{$p_array}; @{$p_array}=(); foreach my $i (@index) { push(@{$p_array}, $dummy[$i]); } } } ################################################################################## # Convert three-letter amino acid code into one-letter code ################################################################################## sub Three2OneLetter { my $res=uc($_[0]); if ($res eq "GLY") {return "G";} elsif ($res eq "ALA") {return "A";} elsif ($res eq "VAL") {return "V";} elsif ($res eq "LEU") {return "L";} elsif ($res eq "ILE") {return "I";} elsif ($res eq "MET") {return "M";} elsif ($res eq "PHE") {return "F";} elsif ($res eq "TYR") {return "Y";} elsif ($res eq "TRP") {return "W";} elsif ($res eq "ASN") {return "N";} elsif ($res eq "ASP") {return "D";} elsif ($res eq "GLN") {return "Q";} elsif ($res eq "GLU") {return "E";} elsif ($res eq "CYS") {return "C";} elsif ($res eq "PRO") {return "P";} elsif ($res eq "SER") {return "S";} elsif ($res eq "THR") {return "T";} elsif ($res eq "LYS") {return "K";} elsif ($res eq "HIS") {return "H";} elsif ($res eq "ARG") {return "R";} # The HETATM selenomethionine is read by MODELLER like a normal MET in both its HETATM_IO=off and on mode! elsif ($res eq "MSE") {return "M";} # SELENOMETHIONINE elsif ($res eq "ASX") {return "B";} elsif ($res eq "GLX") {return "Z";} else {return "X";} # The following post-translationally modified residues are ignored by MODELLER in its default SET HETATM_IO=off mode # elsif ($res eq "SEC") {return "C";} # SELENOCYSTEINE # elsif ($res eq "SEP") {return "S";} # PHOSPHOSERINE # elsif ($res eq "TPO") {return "T";} # PHOSPHOTHREONINE # elsif ($res eq "TYS") {return "Y";} # SULFONATED TYROSINE # elsif ($res eq "KCX") {return "K";} # LYSINE NZ-CARBOXYLIC ACID } ################################################################################## # Convert one-letter amino acid code into three-letter code ################################################################################## sub One2ThreeLetter { my $res=uc($_[0]); if ($res eq "G") {return "GLY";} elsif ($res eq "A") {return "ALA";} elsif ($res eq "V") {return "VAL";} elsif ($res eq "L") {return "LEU";} elsif ($res eq "I") {return "ILE";} elsif ($res eq "M") {return "MET";} elsif ($res eq "F") {return "PHE";} elsif ($res eq "Y") {return "TYR";} elsif ($res eq "W") {return "TRP";} elsif ($res eq "N") {return "ASN";} elsif ($res eq "D") {return "ASP";} elsif ($res eq "Q") {return "GLN";} elsif ($res eq "E") {return "GLU";} elsif ($res eq "C") {return "CYS";} elsif ($res eq "P") {return "PRO";} elsif ($res eq "S") {return "SER";} elsif ($res eq "T") {return "THR";} elsif ($res eq "K") {return "LYS";} elsif ($res eq "H") {return "HIS";} elsif ($res eq "R") {return "ARG";} elsif ($res eq "U") {return "SEC";} elsif ($res eq "B") {return "ASX";} elsif ($res eq "Z") {return "GLX";} else {return "UNK";} } # Find the pdb file with $pdbcode in pdb directory sub FindPDBfile() { my $pdbcode=lc($_[0]); foreach $pdbdir (@pdbdirs) { if (! -e "$pdbdir") {warn("Warning in $program: pdb directory '$pdbdir' does not exist!\n"); next;} if (-e "$pdbdir/all") {$pdbfile="$pdbdir/all/";} elsif (-e "$pdbdir/divided") {$pdbfile="$pdbdir/divided/".substr($pdbcode,1,2)."/";} else {$pdbfile="$pdbdir/";} if ($pdbdir=~/divided.?$/) {$pdbfile.=substr($pdbcode,1,2)."/";} if (-e $pdbfile."pdb$pdbcode.ent") {$pdbfile.="pdb$pdbcode.ent";} elsif (-e $pdbfile."pdb$pdbcode.ent.gz") {$pdbfile="gunzip -c $pdbfile"."pdb$pdbcode.ent.gz |";} elsif (-e $pdbfile."pdb$pdbcode.ent.Z") {$pdbfile="gunzip -c $pdbfile"."pdb$pdbcode.ent.Z |";} elsif (-e $pdbfile."$pdbcode.pdb") {$pdbfile.="$pdbcode.pdb";} elsif (scalar(@_) == 2 && -e $pdbfile.$_[0]."\_".$_[1].".pdb") {$pdbfile.=$_[0]."\_".$_[1].".pdb"} else {next;} return $pdbfile; } printf(STDERR "Warning in $program: Cannot find pdb file $pdbfile"."pdb$pdbcode.ent!\n"); return ""; }