# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functions for working with nested data structures.""" from collections import abc as collections_abc import logging import sys from typing import Mapping, Sequence, Text, TypeVar, Union #import numpy as np # Added by 20231229 from .sequence import _is_attrs from .sequence import _is_namedtuple from .sequence import _sequence_like from .sequence import _sorted # pylint: disable=g-import-not-at-top try: import wrapt ObjectProxy = wrapt.ObjectProxy except ImportError: class ObjectProxy(object): """Stub-class for `wrapt.ObjectProxy``.""" try: from tree import _tree except ImportError: if "sphinx" not in sys.modules: raise print("Not find the file (_tree.cpython-310-x86_64-linux-gnu.so*). You need find it in https://colab.research.google.com/github/deepmind/graphcast/blob/master/graphcast_demo.ipynb, or you can rewrite _tree.py by our way. Added by 20231229 S.F. Sune, https://github.com/sfsun67") _tree = None # pylint: enable=g-import-not-at-top __all__ = [ "is_nested", "assert_same_structure", "unflatten_as", "flatten", "flatten_up_to", "flatten_with_path", "flatten_with_path_up_to", "map_structure", "map_structure_up_to", "map_structure_with_path", "map_structure_with_path_up_to", "traverse", "MAP_TO_NONE", ] __version__ = "0.1.8" # Note: this is *not* the same as `six.string_types`, which in Python3 is just # `(str,)` (i.e. it does not include byte strings). _TEXT_OR_BYTES = (str, bytes) _SHALLOW_TREE_HAS_INVALID_KEYS = ( "The shallow_tree's keys are not a subset of the input_tree's keys. The " "shallow_tree has the following keys that are not in the input_tree: {}.") _STRUCTURES_HAVE_MISMATCHING_TYPES = ( "The two structures don't have the same sequence type. Input structure has " "type {input_type}, while shallow structure has type {shallow_type}.") _STRUCTURES_HAVE_MISMATCHING_LENGTHS = ( "The two structures don't have the same sequence length. Input " "structure has length {input_length}, while shallow structure has length " "{shallow_length}." ) _INPUT_TREE_SMALLER_THAN_SHALLOW_TREE = ( "The input_tree has fewer elements than the shallow_tree. Input structure " "has length {input_size}, while shallow structure has length " "{shallow_size}.") _IF_SHALLOW_IS_SEQ_INPUT_MUST_BE_SEQ = ( "If shallow structure is a sequence, input must also be a sequence. " "Input has type: {}.") _IF_SHALLOW_IS_SEQ_INPUT_MUST_BE_SEQ_WITH_PATH = ( "If shallow structure is a sequence, input must also be a sequence. " "Input at path: {path} has type: {input_type}.") K = TypeVar("K") V = TypeVar("V") # A generic monomorphic structure type, e.g. ``StructureKV[Text, int]`` # is an arbitrarily nested structure where keys must be of type ``Text`` # and values are integers. StructureKV = Union[ Sequence["StructureKV[K, V]"], Mapping[K, "StructureKV[K, V]"], V, ] # A specialization of ``StructureKV`` for the common case of ``Text`` keys. try: Structure = StructureKV[Text, V] except TypeError: # Older Python 3.5 and 3.6 releases do not always support such use # of generics. Specialize ``StructureKV`` manually. Structure = Union[Sequence["Structure[V]"], Mapping[Text, "Structure[V]"], V] def _get_attrs_items(obj): """Returns a list of (name, value) pairs from an attrs instance. The list will be sorted by name. Args: obj: an object. Returns: A list of (attr_name, attr_value) pairs. """ return [(attr.name, getattr(obj, attr.name)) for attr in obj.__class__.__attrs_attrs__] def _yield_value(iterable): for _, v in _yield_sorted_items(iterable): yield v def _yield_sorted_items(iterable): """Yield (key, value) pairs for `iterable` in a deterministic order. For Sequences, the key will be an int, the array index of a value. For Mappings, the key will be the dictionary key. For objects (e.g. namedtuples), the key will be the attribute name. In all cases, the keys will be iterated in sorted order. Args: iterable: an iterable. Yields: The iterable's (key, value) pairs, in order of sorted keys. """ if isinstance(iterable, collections_abc.Mapping): # Iterate through dictionaries in a deterministic order by sorting the # keys. Notice this means that we ignore the original order of `OrderedDict` # instances. This is intentional, to avoid potential bugs caused by mixing # ordered and plain dicts (e.g., flattening a dict but using a # corresponding `OrderedDict` to pack it back). for key in _sorted(iterable): yield key, iterable[key] elif _is_attrs(iterable): for item in _get_attrs_items(iterable): yield item elif _is_namedtuple(iterable): for field in iterable._fields: yield (field, getattr(iterable, field)) else: for item in enumerate(iterable): yield item def _num_elements(structure): if _is_attrs(structure): return len(getattr(structure.__class__, "__attrs_attrs__")) else: return len(structure) def is_nested(structure): """Checks if a given structure is nested. >>> tree.is_nested(42) False >>> tree.is_nested({"foo": 42}) True Args: structure: A structure to check. Returns: `True` if a given structure is nested, i.e. is a sequence, a mapping, or a namedtuple, and `False` otherwise. """ return _tree.is_sequence(structure) def flatten(structure): r"""Flattens a possibly nested structure into a list. >>> tree.flatten([[1, 2, 3], [4, [5], [[6]]]]) [1, 2, 3, 4, 5, 6] If `structure` is not nested, the result is a single-element list. >>> tree.flatten(None) [None] >>> tree.flatten(1) [1] In the case of dict instances, the sequence consists of the values, sorted by key to ensure deterministic behavior. This is true also for :class:`~collections.OrderedDict` instances: their sequence order is ignored, the sorting order of keys is used instead. The same convention is followed in :func:`~tree.unflatten`. This correctly unflattens dicts and ``OrderedDict``\ s after they have been flattened, and also allows flattening an ``OrderedDict`` and then unflattening it back using a corresponding plain dict, or vice-versa. Dictionaries with non-sortable keys cannot be flattened. >>> tree.flatten({100: 'world!', 6: 'Hello'}) ['Hello', 'world!'] Args: structure: An arbitrarily nested structure. Returns: A list, the flattened version of the input `structure`. Raises: TypeError: If `structure` is or contains a mapping with non-sortable keys. """ return _tree.flatten(structure) class _DotString(object): def __str__(self): return "." def __repr__(self): return "." _DOT = _DotString() def assert_same_structure(a, b, check_types=True): """Asserts that two structures are nested in the same way. >>> tree.assert_same_structure([(0, 1)], [(2, 3)]) Note that namedtuples with identical name and fields are always considered to have the same shallow structure (even with `check_types=True`). >>> Foo = collections.namedtuple('Foo', ['a', 'b']) >>> AlsoFoo = collections.namedtuple('Foo', ['a', 'b']) >>> tree.assert_same_structure(Foo(0, 1), AlsoFoo(2, 3)) Named tuples with different names are considered to have different shallow structures: >>> Bar = collections.namedtuple('Bar', ['a', 'b']) >>> tree.assert_same_structure(Foo(0, 1), Bar(2, 3)) Traceback (most recent call last): ... TypeError: The two structures don't have the same nested structure. ... Args: a: an arbitrarily nested structure. b: an arbitrarily nested structure. check_types: if `True` (default) types of sequences are checked as well, including the keys of dictionaries. If set to `False`, for example a list and a tuple of objects will look the same if they have the same size. Note that namedtuples with identical name and fields are always considered to have the same shallow structure. Raises: ValueError: If the two structures do not have the same number of elements or if the two structures are not nested in the same way. TypeError: If the two structures differ in the type of sequence in any of their substructures. Only possible if `check_types` is `True`. """ try: _tree.assert_same_structure(a, b, check_types) except (ValueError, TypeError) as e: str1 = str(map_structure(lambda _: _DOT, a)) str2 = str(map_structure(lambda _: _DOT, b)) raise type(e)("%s\n" "Entire first structure:\n%s\n" "Entire second structure:\n%s" % (e, str1, str2)) def _packed_nest_with_indices(structure, flat, index): """Helper function for ``unflatten_as``. Args: structure: Substructure (list / tuple / dict) to mimic. flat: Flattened values to output substructure for. index: Index at which to start reading from flat. Returns: The tuple (new_index, child), where: * new_index - the updated index into `flat` having processed `structure`. * packed - the subset of `flat` corresponding to `structure`, having started at `index`, and packed into the same nested format. Raises: ValueError: if `structure` contains more elements than `flat` (assuming indexing starts from `index`). """ packed = [] for s in _yield_value(structure): if is_nested(s): new_index, child = _packed_nest_with_indices(s, flat, index) packed.append(_sequence_like(s, child)) index = new_index else: packed.append(flat[index]) index += 1 return index, packed def unflatten_as(structure, flat_sequence): r"""Unflattens a sequence into a given structure. >>> tree.unflatten_as([[1, 2], [[3], [4]]], [5, 6, 7, 8]) [[5, 6], [[7], [8]]] If `structure` is a scalar, `flat_sequence` must be a single-element list; in this case the return value is ``flat_sequence[0]``. >>> tree.unflatten_as(None, [1]) 1 If `structure` is or contains a dict instance, the keys will be sorted to pack the flat sequence in deterministic order. This is true also for :class:`~collections.OrderedDict` instances: their sequence order is ignored, the sorting order of keys is used instead. The same convention is followed in :func:`~tree.flatten`. This correctly unflattens dicts and ``OrderedDict``\ s after they have been flattened, and also allows flattening an ``OrderedDict`` and then unflattening it back using a corresponding plain dict, or vice-versa. Dictionaries with non-sortable keys cannot be unflattened. >>> tree.unflatten_as({1: None, 2: None}, ['Hello', 'world!']) {1: 'Hello', 2: 'world!'} Args: structure: Arbitrarily nested structure. flat_sequence: Sequence to unflatten. Returns: `flat_sequence` unflattened into `structure`. Raises: ValueError: If `flat_sequence` and `structure` have different element counts. TypeError: If `structure` is or contains a mapping with non-sortable keys. """ if not is_nested(flat_sequence): raise TypeError("flat_sequence must be a sequence not a {}:\n{}".format( type(flat_sequence), flat_sequence)) if not is_nested(structure): if len(flat_sequence) != 1: raise ValueError("Structure is a scalar but len(flat_sequence) == %d > 1" % len(flat_sequence)) return flat_sequence[0] flat_structure = flatten(structure) if len(flat_structure) != len(flat_sequence): raise ValueError( "Could not pack sequence. Structure had %d elements, but flat_sequence " "had %d elements. Structure: %s, flat_sequence: %s." % (len(flat_structure), len(flat_sequence), structure, flat_sequence)) _, packed = _packed_nest_with_indices(structure, flat_sequence, 0) return _sequence_like(structure, packed) def map_structure(func, *structures, **kwargs): # pylint: disable=redefined-builtin """Maps `func` through given structures. >>> structure = [[1], [2], [3]] >>> tree.map_structure(lambda v: v**2, structure) [[1], [4], [9]] >>> tree.map_structure(lambda x, y: x * y, structure, structure) [[1], [4], [9]] >>> Foo = collections.namedtuple('Foo', ['a', 'b']) >>> structure = Foo(a=1, b=2) >>> tree.map_structure(lambda v: v * 2, structure) Foo(a=2, b=4) Args: func: A callable that accepts as many arguments as there are structures. *structures: Arbitrarily nested structures of the same layout. **kwargs: The only valid keyword argument is `check_types`. If `True` (default) the types of components within the structures have to be match, e.g. ``tree.map_structure(func, [1], (1,))`` will raise a `TypeError`, otherwise this is not enforced. Note that namedtuples with identical name and fields are considered to be the same type. Returns: A new structure with the same layout as the given ones. If the `structures` have components of varying types, the resulting structure will use the same types as ``structures[0]``. Raises: TypeError: If `func` is not callable. ValueError: If the two structures do not have the same number of elements or if the two structures are not nested in the same way. TypeError: If `check_types` is `True` and any two `structures` differ in the types of their components. ValueError: If no structures were given or if a keyword argument other than `check_types` is provided. """ if not callable(func): raise TypeError("func must be callable, got: %s" % func) if not structures: raise ValueError("Must provide at least one structure") check_types = kwargs.pop("check_types", True) if kwargs: raise ValueError( "Only valid keyword arguments are `check_types` " "not: `%s`" % ("`, `".join(kwargs.keys()))) for other in structures[1:]: assert_same_structure(structures[0], other, check_types=check_types) return unflatten_as(structures[0], [func(*args) for args in zip(*map(flatten, structures))]) def map_structure_with_path(func, *structures, **kwargs): """Maps `func` through given structures. This is a variant of :func:`~tree.map_structure` which accumulates a *path* while mapping through the structures. A path is a tuple of indices and/or keys which uniquely identifies the positions of the arguments passed to `func`. >>> tree.map_structure_with_path( ... lambda path, v: (path, v**2), ... [{"foo": 42}]) [{'foo': ((0, 'foo'), 1764)}] Args: func: A callable that accepts a path and as many arguments as there are structures. *structures: Arbitrarily nested structures of the same layout. **kwargs: The only valid keyword argument is `check_types`. If `True` (default) the types of components within the structures have to be match, e.g. ``tree.map_structure_with_path(func, [1], (1,))`` will raise a `TypeError`, otherwise this is not enforced. Note that namedtuples with identical name and fields are considered to be the same type. Returns: A new structure with the same layout as the given ones. If the `structures` have components of varying types, the resulting structure will use the same types as ``structures[0]``. Raises: TypeError: If `func` is not callable or if the `structures` do not have the same layout. TypeError: If `check_types` is `True` and any two `structures` differ in the types of their components. ValueError: If no structures were given or if a keyword argument other than `check_types` is provided. """ return map_structure_with_path_up_to(structures[0], func, *structures, **kwargs) def _yield_flat_up_to(shallow_tree, input_tree, path=()): """Yields (path, value) pairs of input_tree flattened up to shallow_tree. Args: shallow_tree: Nested structure. Traverse no further than its leaf nodes. input_tree: Nested structure. Return the paths and values from this tree. Must have the same upper structure as shallow_tree. path: Tuple. Optional argument, only used when recursing. The path from the root of the original shallow_tree, down to the root of the shallow_tree arg of this recursive call. Yields: Pairs of (path, value), where path the tuple path of a leaf node in shallow_tree, and value is the value of the corresponding node in input_tree. """ if (isinstance(shallow_tree, _TEXT_OR_BYTES) or not (isinstance(shallow_tree, (collections_abc.Mapping, collections_abc.Sequence)) or _is_namedtuple(shallow_tree) or _is_attrs(shallow_tree))): yield (path, input_tree) else: input_tree = dict(_yield_sorted_items(input_tree)) for shallow_key, shallow_subtree in _yield_sorted_items(shallow_tree): subpath = path + (shallow_key,) input_subtree = input_tree[shallow_key] for leaf_path, leaf_value in _yield_flat_up_to(shallow_subtree, input_subtree, path=subpath): yield (leaf_path, leaf_value) def _multiyield_flat_up_to(shallow_tree, *input_trees): """Same as `_yield_flat_up_to`, but takes multiple input trees.""" zipped_iterators = zip(*[_yield_flat_up_to(shallow_tree, input_tree) for input_tree in input_trees]) try: for paths_and_values in zipped_iterators: paths, values = zip(*paths_and_values) yield paths[:1] + values except KeyError as e: paths = locals().get("paths", ((),)) raise ValueError(f"Could not find key '{e.args[0]}' in some `input_trees`. " "Please ensure the structure of all `input_trees` are " "compatible with `shallow_tree`. The last valid path " f"yielded was {paths[0]}.") from e def _assert_shallow_structure(shallow_tree, input_tree, path=None, check_types=True): """Asserts that `shallow_tree` is a shallow structure of `input_tree`. That is, this function recursively tests if each key in shallow_tree has its corresponding key in input_tree. Examples: The following code will raise an exception: >>> shallow_tree = {"a": "A", "b": "B"} >>> input_tree = {"a": 1, "c": 2} >>> _assert_shallow_structure(shallow_tree, input_tree) Traceback (most recent call last): ... ValueError: The shallow_tree's keys are not a subset of the input_tree's ... The following code will raise an exception: >>> shallow_tree = ["a", "b"] >>> input_tree = ["c", ["d", "e"], "f"] >>> _assert_shallow_structure(shallow_tree, input_tree) Traceback (most recent call last): ... ValueError: The two structures don't have the same sequence length. ... By setting check_types=False, we drop the requirement that corresponding nodes in shallow_tree and input_tree have to be the same type. Sequences are treated equivalently to Mappables that map integer keys (indices) to values. The following code will therefore not raise an exception: >>> _assert_shallow_structure({0: "foo"}, ["foo"], check_types=False) Args: shallow_tree: an arbitrarily nested structure. input_tree: an arbitrarily nested structure. path: if not `None`, a tuple containing the current path in the nested structure. This is only used for more informative errror messages. check_types: if `True` (default) the sequence types of `shallow_tree` and `input_tree` have to be the same. Raises: TypeError: If `shallow_tree` is a sequence but `input_tree` is not. TypeError: If the sequence types of `shallow_tree` are different from `input_tree`. Only raised if `check_types` is `True`. ValueError: If the sequence lengths of `shallow_tree` are different from `input_tree`. """ if is_nested(shallow_tree): if not is_nested(input_tree): if path is not None: raise TypeError( _IF_SHALLOW_IS_SEQ_INPUT_MUST_BE_SEQ_WITH_PATH.format( path=list(path), input_type=type(input_tree))) else: raise TypeError( _IF_SHALLOW_IS_SEQ_INPUT_MUST_BE_SEQ.format( type(input_tree))) if isinstance(shallow_tree, ObjectProxy): shallow_type = type(shallow_tree.__wrapped__) else: shallow_type = type(shallow_tree) if check_types and not isinstance(input_tree, shallow_type): # Duck-typing means that nest should be fine with two different # namedtuples with identical name and fields. shallow_is_namedtuple = _is_namedtuple(shallow_tree, False) input_is_namedtuple = _is_namedtuple(input_tree, False) if shallow_is_namedtuple and input_is_namedtuple: # pylint: disable=protected-access if not _tree.same_namedtuples(shallow_tree, input_tree): raise TypeError(_STRUCTURES_HAVE_MISMATCHING_TYPES.format( input_type=type(input_tree), shallow_type=shallow_type)) # pylint: enable=protected-access elif not (isinstance(shallow_tree, collections_abc.Mapping) and isinstance(input_tree, collections_abc.Mapping)): raise TypeError(_STRUCTURES_HAVE_MISMATCHING_TYPES.format( input_type=type(input_tree), shallow_type=shallow_type)) if _num_elements(input_tree) != _num_elements(shallow_tree): raise ValueError( _STRUCTURES_HAVE_MISMATCHING_LENGTHS.format( input_length=_num_elements(input_tree), shallow_length=_num_elements(shallow_tree))) elif _num_elements(input_tree) < _num_elements(shallow_tree): raise ValueError( _INPUT_TREE_SMALLER_THAN_SHALLOW_TREE.format( input_size=_num_elements(input_tree), shallow_size=_num_elements(shallow_tree))) shallow_iter = _yield_sorted_items(shallow_tree) input_iter = _yield_sorted_items(input_tree) def get_matching_input_branch(shallow_key): for input_key, input_branch in input_iter: if input_key == shallow_key: return input_branch raise ValueError(_SHALLOW_TREE_HAS_INVALID_KEYS.format([shallow_key])) for shallow_key, shallow_branch in shallow_iter: input_branch = get_matching_input_branch(shallow_key) _assert_shallow_structure( shallow_branch, input_branch, path + (shallow_key,) if path is not None else None, check_types=check_types) def flatten_up_to(shallow_structure, input_structure, check_types=True): """Flattens `input_structure` up to `shallow_structure`. All further nested components in `input_structure` are retained as-is. >>> structure = [[1, 1], [2, 2]] >>> tree.flatten_up_to([None, None], structure) [[1, 1], [2, 2]] >>> tree.flatten_up_to([None, [None, None]], structure) [[1, 1], 2, 2] If `shallow_structure` and `input_structure` are not nested, the result is a single-element list: >>> tree.flatten_up_to(42, 1) [1] >>> tree.flatten_up_to(42, [1, 2, 3]) [[1, 2, 3]] Args: shallow_structure: A structure with the same (but possibly more shallow) layout as `input_structure`. input_structure: An arbitrarily nested structure. check_types: If `True`, check that each node in shallow_tree has the same type as the corresponding node in `input_structure`. Returns: A list, the partially flattened version of `input_structure` wrt `shallow_structure`. Raises: TypeError: If the layout of `shallow_structure` does not match that of `input_structure`. TypeError: If `check_types` is `True` and `shallow_structure` and `input_structure` differ in the types of their components. """ _assert_shallow_structure( shallow_structure, input_structure, path=None, check_types=check_types) # Discard paths returned by _yield_flat_up_to. return [v for _, v in _yield_flat_up_to(shallow_structure, input_structure)] def flatten_with_path_up_to(shallow_structure, input_structure, check_types=True): """Flattens `input_structure` up to `shallow_structure`. This is a combination of :func:`~tree.flatten_up_to` and :func:`~tree.flatten_with_path` Args: shallow_structure: A structure with the same (but possibly more shallow) layout as `input_structure`. input_structure: An arbitrarily nested structure. check_types: If `True`, check that each node in shallow_tree has the same type as the corresponding node in `input_structure`. Returns: A list of ``(path, item)`` pairs corresponding to the partially flattened version of `input_structure` wrt `shallow_structure`. Raises: TypeError: If the layout of `shallow_structure` does not match that of `input_structure`. TypeError: If `input_structure` is or contains a mapping with non-sortable keys. TypeError: If `check_types` is `True` and `shallow_structure` and `input_structure` differ in the types of their components. """ _assert_shallow_structure( shallow_structure, input_structure, path=(), check_types=check_types) return list(_yield_flat_up_to(shallow_structure, input_structure)) def map_structure_up_to(shallow_structure, func, *structures, **kwargs): """Maps `func` through given structures up to `shallow_structure`. This is a variant of :func:`~tree.map_structure` which only maps the given structures up to `shallow_structure`. All further nested components are retained as-is. >>> structure = [[1, 1], [2, 2]] >>> tree.map_structure_up_to([None, None], len, structure) [2, 2] >>> tree.map_structure_up_to([None, [None, None]], str, structure) ['[1, 1]', ['2', '2']] Args: shallow_structure: A structure with layout common to all `structures`. func: A callable that accepts as many arguments as there are structures. *structures: Arbitrarily nested structures of the same layout. **kwargs: No valid keyword arguments. Raises: ValueError: If `func` is not callable or if `structures` have different layout or if the layout of `shallow_structure` does not match that of `structures` or if no structures were given. Returns: A new structure with the same layout as `shallow_structure`. """ return map_structure_with_path_up_to( shallow_structure, lambda _, *args: func(*args), # Discards path. *structures, **kwargs) def map_structure_with_path_up_to(shallow_structure, func, *structures, **kwargs): """Maps `func` through given structures up to `shallow_structure`. This is a combination of :func:`~tree.map_structure_up_to` and :func:`~tree.map_structure_with_path` Args: shallow_structure: A structure with layout common to all `structures`. func: A callable that accepts a path and as many arguments as there are structures. *structures: Arbitrarily nested structures of the same layout. **kwargs: No valid keyword arguments. Raises: ValueError: If `func` is not callable or if `structures` have different layout or if the layout of `shallow_structure` does not match that of `structures` or if no structures were given. Returns: Result of repeatedly applying `func`. Has the same structure layout as `shallow_tree`. """ if "check_types" in kwargs: logging.warning("The use of `check_types` is deprecated and does not have " "any effect.") del kwargs results = [] for path_and_values in _multiyield_flat_up_to(shallow_structure, *structures): results.append(func(*path_and_values)) return unflatten_as(shallow_structure, results) def flatten_with_path(structure): r"""Flattens a possibly nested structure into a list. This is a variant of :func:`~tree.flattens` which produces a list of pairs: ``(path, item)``. A path is a tuple of indices and/or keys which uniquely identifies the position of the corresponding ``item``. >>> tree.flatten_with_path([{"foo": 42}]) [((0, 'foo'), 42)] Args: structure: An arbitrarily nested structure. Returns: A list of ``(path, item)`` pairs corresponding to the flattened version of the input `structure`. Raises: TypeError: If ``structure`` is or contains a mapping with non-sortable keys. """ return list(_yield_flat_up_to(structure, structure)) #: Special value for use with :func:`traverse`. MAP_TO_NONE = object() def traverse(fn, structure, top_down=True): """Traverses the given nested structure, applying the given function. The traversal is depth-first. If ``top_down`` is True (default), parents are returned before their children (giving the option to avoid traversing into a sub-tree). >>> visited = [] >>> tree.traverse(visited.append, [(1, 2), [3], {"a": 4}], top_down=True) [(1, 2), [3], {'a': 4}] >>> visited [[(1, 2), [3], {'a': 4}], (1, 2), 1, 2, [3], 3, {'a': 4}, 4] >>> visited = [] >>> tree.traverse(visited.append, [(1, 2), [3], {"a": 4}], top_down=False) [(1, 2), [3], {'a': 4}] >>> visited [1, 2, (1, 2), 3, [3], 4, {'a': 4}, [(1, 2), [3], {'a': 4}]] Args: fn: The function to be applied to each sub-nest of the structure. When traversing top-down: If ``fn(subtree) is None`` the traversal continues into the sub-tree. If ``fn(subtree) is not None`` the traversal does not continue into the sub-tree. The sub-tree will be replaced by ``fn(subtree)`` in the returned structure (to replace the sub-tree with None, use the special value :data:`MAP_TO_NONE`). When traversing bottom-up: If ``fn(subtree) is None`` the traversed sub-tree is returned unaltered. If ``fn(subtree) is not None`` the sub-tree will be replaced by ``fn(subtree)`` in the returned structure (to replace the sub-tree with None, use the special value :data:`MAP_TO_NONE`). structure: The structure to traverse. top_down: If True, parent structures will be visited before their children. Returns: The structured output from the traversal. """ return traverse_with_path(lambda _, x: fn(x), structure, top_down=top_down) def traverse_with_path(fn, structure, top_down=True): """Traverses the given nested structure, applying the given function. The traversal is depth-first. If ``top_down`` is True (default), parents are returned before their children (giving the option to avoid traversing into a sub-tree). >>> visited = [] >>> tree.traverse_with_path( ... lambda path, subtree: visited.append((path, subtree)), ... [(1, 2), [3], {"a": 4}], ... top_down=True) [(1, 2), [3], {'a': 4}] >>> visited == [ ... ((), [(1, 2), [3], {'a': 4}]), ... ((0,), (1, 2)), ... ((0, 0), 1), ... ((0, 1), 2), ... ((1,), [3]), ... ((1, 0), 3), ... ((2,), {'a': 4}), ... ((2, 'a'), 4)] True >>> visited = [] >>> tree.traverse_with_path( ... lambda path, subtree: visited.append((path, subtree)), ... [(1, 2), [3], {"a": 4}], ... top_down=False) [(1, 2), [3], {'a': 4}] >>> visited == [ ... ((0, 0), 1), ... ((0, 1), 2), ... ((0,), (1, 2)), ... ((1, 0), 3), ... ((1,), [3]), ... ((2, 'a'), 4), ... ((2,), {'a': 4}), ... ((), [(1, 2), [3], {'a': 4}])] True Args: fn: The function to be applied to the path to each sub-nest of the structure and the sub-nest value. When traversing top-down: If ``fn(path, subtree) is None`` the traversal continues into the sub-tree. If ``fn(path, subtree) is not None`` the traversal does not continue into the sub-tree. The sub-tree will be replaced by ``fn(path, subtree)`` in the returned structure (to replace the sub-tree with None, use the special value :data:`MAP_TO_NONE`). When traversing bottom-up: If ``fn(path, subtree) is None`` the traversed sub-tree is returned unaltered. If ``fn(path, subtree) is not None`` the sub-tree will be replaced by ``fn(path, subtree)`` in the returned structure (to replace the sub-tree with None, use the special value :data:`MAP_TO_NONE`). structure: The structure to traverse. top_down: If True, parent structures will be visited before their children. Returns: The structured output from the traversal. """ def traverse_impl(path, structure): """Recursive traversal implementation.""" def subtree_fn(item): subtree_path, subtree = item return traverse_impl(path + (subtree_path,), subtree) def traverse_subtrees(): if is_nested(structure): return _sequence_like(structure, map(subtree_fn, _yield_sorted_items(structure))) else: return structure if top_down: ret = fn(path, structure) if ret is None: return traverse_subtrees() elif ret is MAP_TO_NONE: return None else: return ret else: traversed_structure = traverse_subtrees() ret = fn(path, traversed_structure) if ret is None: return traversed_structure elif ret is MAP_TO_NONE: return None else: return ret return traverse_impl((), structure)