WheatDocumentation.Rnw 103 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175
  1. %% LyX 2.3.5.2 created this file. For more info, see http://www.lyx.org/.
  2. %% Do not edit unless you really know what you are doing.
  3. \documentclass[english]{article}
  4. \usepackage{courier}
  5. \usepackage[latin9]{inputenc}
  6. \usepackage{geometry}
  7. \geometry{verbose,tmargin=2cm,bmargin=2cm,lmargin=2cm,rmargin=2cm}
  8. \usepackage{babel}
  9. \usepackage{array}
  10. \usepackage{verbatim}
  11. \usepackage{longtable}
  12. \usepackage{url}
  13. \usepackage{amsmath}
  14. \usepackage{graphicx}
  15. \usepackage[authoryear]{natbib}
  16. \usepackage{subscript}
  17. \usepackage[unicode=true,pdfusetitle,
  18. bookmarks=true,bookmarksnumbered=false,bookmarksopen=false,
  19. breaklinks=true,pdfborder={0 0 0},pdfborderstyle={},backref=false,colorlinks=false]
  20. {hyperref}
  21. \makeatletter
  22. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% LyX specific LaTeX commands.
  23. %% Because html converters don't know tabularnewline
  24. \providecommand{\tabularnewline}{\\}
  25. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% User specified LaTeX commands.
  26. \usepackage[font={small,it}]{caption}
  27. \usepackage{float}
  28. \usepackage{pdflscape}
  29. \makeatother
  30. \begin{document}
  31. <<setup, echo=FALSE, warning=FALSE, message=FALSE>>=
  32. source('Rcode/wdVisXY.R')
  33. source('Rcode/wdFunctions.R')
  34. opts_chunk$set(fig.path='figure/', fig.align='center', fig.show='hold',
  35. cache=FALSE, echo=FALSE, warning=FALSE, message=FALSE,
  36. dev = 'pdf',dpi=300,
  37. fig.pos='H',fig.width=4,fig.height=3)
  38. options(replace.assign=TRUE,width=90)
  39. library(lattice)
  40. trellis_default <- trellis.par.get()
  41. trellis_default$fontsize$text <- 8
  42. trellis_default$fontsize$points <- 8
  43. trellis.par.set(trellis_default)
  44. library(XML)
  45. wheat_xml <- xmlInternalTreeParse('wheat.xml')
  46. @
  47. \title{The APSIM-Wheat Module (7.5 R3008)}
  48. \maketitle
  49. This documentation is compiled from the source codes and internal
  50. documents of APSIM-Wheat module by Bangyou Zheng ([email protected]),
  51. Karine Chenu ([email protected]), Alastair Doherty ([email protected])
  52. and Scott Chapman ([email protected]).
  53. \tableofcontents{}
  54. \newpage{}
  55. \section{Scope of the APSIM-Wheat module}
  56. The APSIM-Wheat module simulates the wheat growth and development
  57. of a wheat crop in a daily time-step on an area basis (per square
  58. meter, not per single plant). In this module, the wheat crop Wheat
  59. growth and development responds to weather (radiation, temperature),
  60. soil water and soil nitrogen, and management practices. The wheat
  61. module returns information on its soil water and nitrogen uptake to
  62. the soil water and nitrogen modules on a daily basis for reset of
  63. these systems. Information on crop cover is also provided to the water
  64. balance module for calculation of evaporation rates and runoff. Wheat
  65. stover and root residues are 'passed' from wheat to the surface residue
  66. and soil nitrogen modules, respectively at the harvest of the wheat
  67. crop.
  68. The approaches used in modeling crop processes balance the need for
  69. a comprehensive description of the observed variation in crop performance
  70. over diverse production environments and the need to avoid reductionist
  71. approaches of ever-greater complexity with large numbers of parameters
  72. that are difficult to measure.
  73. A list of the module outputs is provided in the \textquoteleft Wheat
  74. module output\textquoteright s section below. Basically the module
  75. simulates phenological development, leaf area growth expansion, biomass
  76. and N concentration of different crop components (\texttt{Leaf}, \texttt{Stem},
  77. \texttt{Root} and \texttt{Grain}) on a daily basis. It also predicts
  78. grain size and grain number.
  79. \section{APSIM-Wheat history}
  80. APSIM-Wheat has been developed from a combination of the approaches
  81. used in previous APSIM wheat modules:\citet{asseng1998useof,asseng1998performance,wang2003thenew,meinke1997improving,meinke1998improving}.
  82. The current version of the model is implemented within the APSIM Plant
  83. model framework which is currently used for other crops such as grain
  84. legumes and canola. Most of the model constants (species-specific)
  85. and parameters (cultivar specific) are externalized from the code
  86. (wheat.xml file).
  87. \section{Phenology}
  88. There are 11 phases in APSIM-Wheat module (\autoref{fig:PhenologWheatModule}).
  89. The timing of each phase (except from sowing to germination, which
  90. is driven by sowing depth and thermal time) is determined by the accumulation
  91. of thermal time ($TT$) adjusted for other factors which vary with
  92. the phase considered (e.g. vernalisation, photoperiod, N). The length
  93. of each phase is determined by a fixed thermal time (\textquoteleft thermal
  94. time target\textquoteright ), which is specified by \textquotedblleft tt\_\textless phase\_name\textgreater\textquotedblright{}
  95. in wheat.xml. Most parameters of thermal time targets are cultivar-specific.
  96. \subsection{Thermal time calculation\label{par:Thermal-time}}
  97. The daily thermal time ($\Delta TT$) is calculated from the daily
  98. average of maximum and minimum crown temperatures, and is adjusted
  99. by genetic and environmental factors. Hence, the duration of phases
  100. between emergence and floral initiation is adjusted for photoperiod
  101. and vernalisation, using the cultivar-specific parameters ``photoperiod
  102. factor'' ($f_{D}$, \autoref{eq:PhotoperiodFactor}) and ``vernalisation
  103. factor'' ($f_{V}$, \autoref{eq:VernalisationFactor}). Other environmental
  104. factors include soil water stress ($f_{W,\,pheno}$, \autoref{eq:SoilWaterStress}),
  105. nitrogen stress ($f_{N,\,pheno}$, \autoref{eq:NitrogenStress})
  106. and phosphorus stress ($f_{P,\,pheno}$, \autoref{sub:Phosphorus-stress})
  107. in all phases except from Sowing to Emergence (See details below),
  108. but they are all parametrized to have to effect in the current released
  109. APSIM-Wheat. All factors are bound from 0 to 1.
  110. \begin{figure}[h]
  111. \begin{centering}
  112. \includegraphics[width=17cm]{figure/wdWheatPhenology}
  113. \par\end{centering}
  114. \caption{\label{fig:PhenologWheatModule}Phenology in the APSIM\_Wheat module.
  115. Targets are expressed in adjusted thermal time (\autoref{eq:CumThermalTime2})
  116. and are cultivar-specific parameters. The values given for the reference
  117. genotype Hartog. }
  118. \end{figure}
  119. Crown temperatures are simulated according to the original routines
  120. in CERES-Wheat and correspond to air temperatures for non-freezing
  121. temperatures.\textbf{ }The maximum and minimum crown temperatures
  122. ($T_{cmax}$ and $T_{cmin}$) are calculated according to the maximum
  123. and minimum air temperature ($T_{max}$ and $T_{min}$), respectively.
  124. \begin{equation}
  125. T_{cmax}=\begin{cases}
  126. 2+T_{max}(0.4+0.0018(H_{snow}-15)^{2}) & \quad T_{max}<0\\
  127. T_{max} & \quad T_{max}\geq0
  128. \end{cases}\label{eq:CrownMaxTemperature}
  129. \end{equation}
  130. \begin{equation}
  131. T_{cmin}=\begin{cases}
  132. 2+T_{min}(0.4+0.0018(H_{snow}-15)^{2}) & \quad T_{min}<0\\
  133. T_{min} & \quad T_{min}\geq0
  134. \end{cases}\label{eq:CrownMinTemperature}
  135. \end{equation}
  136. where $H_{snow}$ is the snow depth (cm). The default value of $H_{snow}$
  137. is set to zero in the source codes (\autoref{fig:wdCrownTemperature}).
  138. For more detail information about \autoref{eq:CrownMaxTemperature}
  139. and \autoref{eq:CrownMinTemperature}, please see the function\textbf{
  140. }\texttt{CWVernalPhase::vernalisation} in the APSIM code.
  141. <<wdCrownTemperature,fig.cap='Crown temperature ($T_{c}$) in response to air temperature ($T$) for different snow depth ($H_{snow}$) in APSIM-Wheat. In the released APSIM version, $H_{snow}$ equals zero cm.'>>=
  142. p <- wdCrownTemperature()
  143. print(p)
  144. @
  145. The daily crown mean temperature ($T_{c}$) is calculated by the maximum
  146. ($T_{cmax}$) and minimum ($T_{cmin}$) crown temperature.
  147. \begin{equation}
  148. T_{c}=\frac{T_{cmax}+T_{cmin}}{2}
  149. \end{equation}
  150. Daily thermal time ($\Delta TT$) is calculated based on daily mean
  151. crown temperature, using three cardinal temperatures (\autoref{fig:wdThermalTime}).
  152. The default values of the cardinal temperatures and relative thermal
  153. time are specified by x\_temp (0, 26, 34) and y\_tt (0, 26, 0), respectively,
  154. in the wheat.xml (\autoref{fig:wdThermalTime}). Other crop modules
  155. in APSIM calculate thermal time every 3 hours.
  156. \begin{equation}
  157. \Delta TT=\begin{cases}
  158. T_{c} & \quad0<T_{c}\leq26\\
  159. \frac{26}{8}(34-T_{c}) & \quad26<T_{c}\leq34\\
  160. 0 & \quad T_{c}\leq0\;\text{or}\;T_{c}>34
  161. \end{cases}\label{eq:thermaltime}
  162. \end{equation}
  163. <<wdThermalTime,fig.cap='Daily thermal time ($\\Delta TT$) in response to daily crown temperature ($T_{c}$) in APSIM-Wheat.'>>=
  164. p <- wdVisXY(wheat_xml,
  165. "x_temp", "y_tt",
  166. xlab = expression(paste("Crown Temperature", ~"("*degree*"C)")),
  167. ylab = expression(paste("Thermal Time", ~"("*degree*"Cd)")))
  168. print(p)
  169. @
  170. For each phenological stage, the daily thermal time ($TT^{\prime}$)
  171. is summed from the start of phase and can be reduced by photoperiod
  172. ($f_{D}$, \autoref{eq:PhotoperiodFactor}) and vernalisation factor
  173. ($f_{V}$, \autoref{eq:VernalisationFactor}) and also dependent on
  174. environmental factors (photoperiod and temperature). The environmental
  175. factors include soil water stress ($f_{W,\,pheno}$, \autoref{eq:SoilWaterStress}),
  176. nitrogen stress ($f_{N,\,pheno}$, \autoref{eq:NitrogenStress}) and
  177. phosphorus stress ($f_{P,\,pheno}$, \autoref{sub:Phosphorus-stress}).
  178. The next phenological stage occurs when this adjusted thermal time
  179. ($TT^{\prime}$ in \autoref{eq:CumThermalTime}) reaches the ``target
  180. thermal time'' for the stage considered \autoref{fig:PhenologWheatModule}.
  181. \begin{equation}
  182. TT^{\prime}=\sum[\Delta TT\times\min(f_{D},\;f_{V})\times\min(f_{W,\,pheno},\:f_{N,\,pheno},\;f_{P,\,pheno})]\label{eq:CumThermalTime}
  183. \end{equation}
  184. In the current released version, soil water, nitrogen and phosphorus
  185. stresses have no effect on phenological development (i.e. parameters
  186. $f_{W,\,pheno}=f_{P,\,pheno}=1$ \autoref{eq:SoilWaterStress}, and
  187. $f_{N,\,pheno}$ has values typically above 1 \autoref{eq:NitrogenStress}).
  188. So, \autoref{eq:CumThermalTime} is reduced to
  189. \begin{equation}
  190. TT^{\prime}=\sum[\Delta TT\times\min(f_{D},\;f_{V})]\label{eq:CumThermalTime2}
  191. \end{equation}
  192. In the output variables of wheat module, $TT^{\prime}$ from the start
  193. of each phase is named as ``ttafter\textless phasename\textgreater ''.
  194. For example, the output variable ``ttaftersowing'' is not the actual
  195. thermal time after sowing, but the thermal time adjusted for genetic
  196. and environmental factors.
  197. \subsection{Sowing-germination phase}
  198. The seed germination is determined by soil water availability in the
  199. seeded layer (specified by \texttt{pesw\_germ} with default value
  200. 0 mm). The crop will die if germination has not occurred before a
  201. certain period, defined by \texttt{days\_germ\_limit} in wheat.xml,
  202. which has a default value of 40 d.
  203. \subsection{Germination-emergence phase}
  204. The germination to emergence phase includes an effect of the depth
  205. of sowing ($D_{seed}$) on the thermal time target. The phase is comprised
  206. of an initial period of fixed thermal time during which shoot elongation
  207. is slow (the \textquotedblleft lag\textquotedblright{} phase, $T_{lag}$)
  208. and a linear period, where the rate of shoot elongation ($r_{e}$,
  209. C d mm$^{-1}$) towards the soil surface is linearly related to air
  210. temperature. Then, the period of emergence ($T_{emer}$) is calculated
  211. by
  212. \begin{equation}
  213. T_{emer}=T_{lag}+r_{e}D_{seed}\label{eq:Emergence}
  214. \end{equation}
  215. The crop will die if emergence has not occurred before a certain period,
  216. defined by \texttt{tt\_emerg\_limit} in wheat.xml, which has a default
  217. value of 300$^{\circ}\text{C}$ d.
  218. Most studies on seedling germination have simply recorded the accumulated
  219. thermal time between germination and 50\% emergence from a given sowing
  220. depth. For the purposes of model parametrization the value of $T_{lag}$
  221. (\texttt{shoot\_lag}) has been assumed to be around 40 $^{\circ}\text{C}$
  222. d, while $r_{e}$ (\texttt{shoot\_rate}) has been derived from studies
  223. where thermal time to emergence was measured and where sowing depth
  224. was known and it is set to 1.5 $^{\circ}\text{C}$ d per mm. This
  225. means that at a sowing depth of 40 mm emergence occurs 100$^{\circ}\text{C}$
  226. d after germination ($40+1.5\times40$).
  227. There is the capability of increasing the time taken to reach emergence
  228. due to a dry soil layer in which the seed is germinating, through
  229. the relationship between \texttt{fasw\_emerg} and \texttt{rel\_emerg\_rate}.
  230. Currently this effect is \textquotedblleft turned off\textquotedblright{}
  231. in the Wheat.xml file.
  232. \subsection{Photoperiod impact on phenology\label{subsec:Photoperiod}}
  233. Photoperiod is calculated from day of year and latitude using standard
  234. astronomical equations accounting for civil twilight using the parameter
  235. twilight, which is assumed to be -6$^{\circ}$ (civil twilight) in
  236. wheat.xml. Twilight is defined as the interval between sunrise or
  237. sunset and the time when the true center of the sun is 6$^{\circ}$
  238. below the horizon. Other crop modules of APSIM have used -2.2$^{\circ}$
  239. as twilight parameters. In APSIM, the photoperiod affects phenology
  240. between emergence and floral initiation (\autoref{fig:PhenologWheatModule}).
  241. During this period, thermal time is affected by a photoperiod factor
  242. ($f_{D}$ in \autoref{eq:CumThermalTime} and \autoref{eq:CumThermalTime2})
  243. that is calculated by
  244. \begin{equation}
  245. f_{D}=1-0.002R_{p}(20-L_{P})^{2}\label{eq:PhotoperiodFactor}
  246. \end{equation}
  247. where $L_{P}$ is the day length (h), $R_{P}$ is the sensitivities
  248. to photoperiod which is cultivar-specific and is specified by \texttt{photop\_sens}
  249. in wheat.xml. The default value of $R_{P}$ is 3 (\autoref{fig:wdPhotoperiod}).
  250. <<wdPhotoperiod,fig.cap='Relationship between photoperiod factor ($f_{D}$) and day length ($L_{P}$) with different sensitivities to photoperiod ($R_{p}$). The default value of $R_{P}$ is 3.'>>=
  251. p <- wdPhotoPeriod()
  252. print(p)
  253. @
  254. \subsection{Vernalisation impact on phenology}
  255. In APSIM, vernalisation effects phenology between emergence and floral
  256. initiation (\autoref{fig:PhenologWheatModule}). During this period,
  257. thermal time is affected by a vernalisation factor ($f_{V}$ in \autoref{eq:CumThermalTime}
  258. and \autoref{eq:CumThermalTime2}).
  259. Vernalisation is simulated from daily average crown temperature ($T_{c}$),
  260. daily maximum ($T_{max}$) and minimum ($T_{min}$) temperatures using
  261. the original CERES approach (\autoref{fig:wdVernalisation}).
  262. \begin{equation}
  263. \Delta V=\min(1.4-0.0778T_{c},\:0.5+13.44\frac{T_{c}}{(T_{max}-T_{min}+3)^{2}})\quad\text{when, }T_{max}<30\,{}^{\circ}\text{C}\:\text{and}\,T_{min}<15\,{}^{\circ}\text{C}
  264. \end{equation}
  265. <<wdVernalisation,fig.cap='Relationship between vernalisation ($\\Delta V$) and maximum ($T_{max}$) and minimum ($T_{min}$) temperature.'>>=
  266. p <- wdVernalisation()
  267. print(p)
  268. @
  269. Devernalisation can occur if daily $T_{max}$ is above 30 $^{\circ}\text{C}$
  270. and the total vernalisation ($V$) is less than 10 (\autoref{fig:wdDevernalisation}).
  271. \begin{equation}
  272. \Delta V_{d}=\min(0.5(T_{max}-30),\:V)\quad\text{when, }T_{max}>30\,{}^{\circ}\text{C}\;\text{and}\;V<10
  273. \end{equation}
  274. <<wdDevernalisation,fig.cap='Relationship between devernalisation ($\\Delta V_{d}$) and maximum temperature ($T_{max}$) when the total vernalisation ($V$) is less than 10.'>>=
  275. p <- wdDevernalisation()
  276. print(p)
  277. @
  278. The total vernalisation ($V$) is calculated by summing daily vernalisation
  279. and devernalisation from Germination to Floral initiation (Composite
  280. phase \texttt{Vernalisation} in \autoref{fig:PhenologWheatModule}).
  281. \begin{equation}
  282. V=\sum(\Delta V-\Delta V_{d})
  283. \end{equation}
  284. However, the vernalisation factor ($f_{v}$) is calculated just from
  285. Emergence to Floral initiation (Composite phases \textbf{eme2ej} in
  286. Fig. \ref{fig:PhenologWheatModule}).
  287. \begin{equation}
  288. f_{V}=1-(0.0054545R_{V}+0.0003)\times(50-V)\label{eq:VernalisationFactor}
  289. \end{equation}
  290. where $R_{V}$ is the sensitivities to vernalisation, which is cultivar-specific
  291. and is specified by \texttt{vern\_sens} in wheat.xml. The default
  292. value of $R_{V}$ is 1.5 (\autoref{fig:wdVernalisationFactor})
  293. <<wdVernalisationFactor,fig.width=4,fig.height=4,fig.cap='Relationship between cumulated vernalisation ($V$) and vernalisation factor ($f_{V}$) and for different sensitivities to vernalisation ($R_{V}$). The default value of $R_{V}$ is 1.5.'>>=
  294. p <- wdVernalisationFactor()
  295. print(p)
  296. @
  297. \section{Biomass accumulation (Photosynthesis)}
  298. The daily biomass accumulation ($\Delta Q$) corresponds to dry-matter
  299. above-ground biomass, and is calculated as a potential biomass accumulation
  300. resulting from radiation interception ($\Delta Q_{r}$, \autoref{eq:BiomassProduction})
  301. that is limited by soil water deficiency ($\Delta Q_{w}$, \autoref{eq:WaterStressBiomassProduction-1}).
  302. \subsection{Potential biomass accumulation from radiation use efficiency\label{subsec:Radiation-limited-biomass}}
  303. The radiation-limited dry-biomass accumulation ($\Delta Q_{r}$) is
  304. calculated by the intercepted radiation ($I$), radiation use efficiency
  305. ($RUE$), diffuse factor ($f_{d}$, \autoref{par:Diffuse-factor}),
  306. stress factor ($f_{s}$, \autoref{eq:StressFactor4Photosynthesis})
  307. and carbon dioxide factor ($f_{c}$, \autoref{eq:CO2Factor4Photosynthesis}).
  308. \begin{equation}
  309. \Delta Q_{r}=I\times RUE\times f_{d}\times f_{s}\times f_{c}\label{eq:BiomassProduction}
  310. \end{equation}
  311. where $f_{d}$, $f_{s}$ and $f_{c}$ are defined in the wheat.xml
  312. file. In the current version of APSIM-Wheat, only \texttt{Leaf} produces
  313. photosynthate. Diffuse factor ($f_{d}$) equals to 1 (\autoref{par:Diffuse-factor}),
  314. so that \autoref{eq:BiomassProduction} can be:
  315. \begin{equation}
  316. \Delta Q_{r}=I\times RUE\times f_{s}\times f_{c}\label{eq:BiomassProduction2}
  317. \end{equation}
  318. \subsubsection{Radiation interception}
  319. Radiation interception is calculated from the leaf area index (LAI,
  320. m$^{2}$ m$^{-2}$) and the extinction coefficient (\textit{k}) \citep{monsi2005onthe}.
  321. \begin{equation}
  322. I=I_{0}(1-\exp(-k\times LAI\times f_{h})/f_{h})\label{eq:RadiationInterception}
  323. \end{equation}
  324. where $I_{0}$ is the total radiation at the top of the canopy (MJ)
  325. which is directly imported from weather records; $f_{h}$ is light
  326. interception modified to give hedge-row effect with skip row. $f_{h}$
  327. could be calculated based on the canopy width, but is not used in
  328. the current version of APSIM (i.e. $f_{h}$ = 1). So, \autoref{eq:RadiationInterception}
  329. is reduced to.
  330. \begin{equation}
  331. I=I_{0}(1-\exp(-k\times LAI))\label{eq:RadiationInterception-1}
  332. \end{equation}
  333. Extinction coefficient ($k$) varies with row spacing,
  334. \begin{equation}
  335. k=h_{e}(W_{r})
  336. \end{equation}
  337. where $W_{r}$ is the row spacing which is specified by the user (in
  338. the APSIM interface, the .sim or .apsim file); $h_{e}$ is a function
  339. of rowing spacing which is defined for both green leaf and dead leaves
  340. by parameters \texttt{x\_row\_spacing}, \texttt{y\_extinct\_coef}
  341. in the wheat.xml file (\autoref{fig:wdRowExtinct}) and is linearly
  342. interpolated by APSIM. In the current version of APSIM-Wheat, no impact
  343. of row spacing is considered (\autoref{fig:wdRowExtinct})
  344. <<wdRowExtinct,fig.cap='Values of extinction coefficient for different row spacings.'>>=
  345. p <- wdVisXY(wheat_xml,
  346. "x_row_spacing",
  347. c("y_extinct_coef",
  348. 'y_extinct_coef_dead'),
  349. xlab = 'Row spacing (mm)',
  350. ylab = 'Extinction coefficient (k)',
  351. keylab = c('Green leaf', 'Dead leaf'),
  352. keypos = c(0.9, 0.5))
  353. print(p)
  354. @
  355. \subsubsection{Radiation use efficiency}
  356. $RUE$ (g MJ$^{\text{-1}}$) is a function of growth stages which
  357. is defined by parameters \texttt{x\_stage\_rue} and \texttt{y\_rue}
  358. in wheat.xml (\autoref{fig:wdRUE}) and linearly interpolated by APSIM.
  359. In the current version of APSIM-Wheat, $RUE$ equal to 1.24 from emergence
  360. to the end of grain-filling and does not vary as a function of daily
  361. incident radiation as in the model NWHEAT.
  362. <<wdRUE,fig.cap='Radiation use efficiency (RUE) for different growth stages.'>>=
  363. p <- wdVisXY(wheat_xml,
  364. "x_stage_rue", "y_rue",
  365. xlab = 'Stage code',
  366. ylab = 'RUE')
  367. print(p)
  368. @
  369. \subsubsection{Stress factor (Temperature, nitrogen, phosphorus (not applied), oxygen
  370. (not applied))}
  371. Actual daily radiation-limited biomass accumulation can be reduced
  372. by a stress factor ($f_{s}$, \autoref{eq:BiomassProduction} and
  373. \autoref{eq:BiomassProduction2}). This stress factor is the minimum
  374. value of a temperature factor ($f_{T,\ photo}$, \autoref{eq:TemStressPhoto}),
  375. a nitrogen factor ($f_{N\ photo}$, \autoref{eq:NStressPhoto}), a
  376. phosphorus factor ($f_{P\ photo}$) and an oxygen factor ($f_{O\ photo}$).
  377. \begin{equation}
  378. f_{s}=\min(f_{T,\ photo},\ f_{N,\ photo},\ f_{P,\ photo},\ f_{O,\ photo})\label{eq:StressFactor4Photosynthesis}
  379. \end{equation}
  380. No phosphorus stress $f_{P,\,photo}$ and oxygen stress $f_{O,\,photo}$
  381. are applied in the current version of APSIM-Wheat. So, \autoref{eq:StressFactor4Photosynthesis}
  382. is reduced to
  383. \begin{equation}
  384. f_{s}=\min(f_{T,\ photo},\ f_{N,\ photo})\label{eq:StressFactor4Photosynthesis2}
  385. \end{equation}
  386. \paragraph{The temperature factor}
  387. $f_{T,\ photo}$ is a function of the daily mean temperature and is
  388. defined by parameters \texttt{x\_ave\_temp} and \texttt{y\_stress\_photo}
  389. in the wheat.xml (\autoref{fig:wdTemperatureFactorOnPhoto}). Values
  390. are linearly interpolated by APSIM. The temperature stress is applied
  391. from sowing to harvest.
  392. \begin{equation}
  393. f_{T,\ photo}=h_{T,\ photo}(\frac{T_{max}+T_{min}}{2})\label{eq:TemStressPhoto}
  394. \end{equation}
  395. <<wdTemperatureFactorOnPhoto,fig.cap='Temperature factor in response to mean daily temperature.'>>=
  396. p <- wdVisXY(wheat_xml,
  397. "x_ave_temp", "y_stress_photo",
  398. xlab = expression(paste("Mean daily temperature", ~"("*degree*"C)")),
  399. ylab = expression(Temperature~factor~(f[T])))
  400. print(p)
  401. @
  402. \paragraph{The nitrogen factor}
  403. $f_{N,\,photo}$ is determined by the difference between leaf nitrogen
  404. concentration and leaf minimum and critical nitrogen concentration.
  405. \begin{equation}
  406. f_{N,\,photo}=R_{N,\,photo}\sum_{leaf}\frac{C_{N}-C_{N,\,min}}{C_{N,\,crit}-C_{N,\,min}}\label{eq:NStressPhoto0}
  407. \end{equation}
  408. where $C_{N}$ is the nitrogen concentration of \texttt{Leaf} parts;
  409. $R_{N,\,expan}$ is multiplier for nitrogen deficit effect on phenology
  410. which is specified by \texttt{N\_fact\_photo} in the wheat.xml and
  411. default value is 1.5.
  412. \paragraph{The CO$_{\text{2}}$ factor}
  413. For C3 plants (like wheat), the CO$_{\text{2}}$ factor of APSIM is
  414. calculated by a function of environmental CO$_{\text{2}}$ concentration
  415. ($C$, ppm) and daily mean temperature ($T_{mean}$) as published
  416. by \citet{reyenga1999modelling}
  417. \begin{equation}
  418. f_{c}=\frac{(C-C_{i})(350+2C_{i})}{(C+2C_{i})(350-C_{i})}\label{eq:CO2Factor4Photosynthesis}
  419. \end{equation}
  420. where $C_{i}$ is the temperature dependent CO$_{\text{2}}$ compensation
  421. point (ppm) and is derived from the following function.
  422. \begin{equation}
  423. C_{i}=\frac{163-T_{mean}}{5-0.1T_{mean}}
  424. \end{equation}
  425. <<wdCardonDioxideFactor,fig.cap='CO$_{2}$ factor in response to the CO$_{2}$ level ($C$) for different mean air temperatures.'>>=
  426. p <- wdCarbonDioxideFactor()
  427. print(p)
  428. @
  429. \paragraph{Diffuse factor (not used in the current version)\label{par:Diffuse-factor}}
  430. The daily diffuse fraction was calculated using the functions suggested
  431. by \citet{roderick1999estimating}:
  432. \begin{equation}
  433. \begin{cases}
  434. \frac{R_{d}}{R_{s}}=Y_{0} & \qquad for\:\frac{R_{s}}{R_{o}}\leq X_{0}\\
  435. \frac{R_{d}}{R_{s}}=A_{0}+A_{1}\frac{R_{s}}{R_{o}} & \qquad for\:X_{0}<\frac{R_{s}}{R_{o}}\leq X_{1}\\
  436. \frac{R_{d}}{R_{s}}=Y_{1} & \qquad for\:\frac{R_{s}}{R_{o}}>X_{1}
  437. \end{cases}\label{eq:DiffuseFraction}
  438. \end{equation}
  439. where
  440. \begin{equation}
  441. \begin{array}{c}
  442. A_{0}=Y_{1}-A_{1}X_{1}\\
  443. A_{1}=\frac{Y_{1}-Y_{0}}{X_{1}-X_{0}}
  444. \end{array}
  445. \end{equation}
  446. where $R_{o}$ is the daily extra-terrestrial solar irradiance (i.e.
  447. top of the atmosphere); $R_{d}$ and $R_{s}$ are the daily diffuse
  448. and global solar irradiance at the surface, respectively. $X_{0}$,
  449. $X_{1}$, $Y_{0}$ and $Y_{1}$ are four empirical parameters.
  450. \begin{equation}
  451. \begin{array}{l}
  452. X_{0}=0.26,\qquad Y_{0}=0.96,\qquad Y_{1}=0.05,\;and\\
  453. X_{1}=0.80-0.0017|\varphi|+0.000044|\varphi|^{2}
  454. \end{array}
  455. \end{equation}
  456. where $\varphi$ is latitude.
  457. $R_{o}$ is derived from this function
  458. \begin{equation}
  459. R_{0}=\frac{86400\times1360\times(\varpi\times\sin(\varphi)\times\sin(\theta)+\cos(\varphi)\times\cos(\theta)\times\sin(\varpi_{0}))}{1000000\pi}
  460. \end{equation}
  461. where $\varpi_{0}$ is the time of sunrise and sunset, which derives
  462. from any solar declination ($\theta$) and latitude ($\varphi$) in
  463. terms of local solar time when sunrise and sunset actually occur (\url{http://en.wikipedia.org/wiki/Sunrise_equation})
  464. \begin{equation}
  465. \varpi_{0}=\arccos(-\tan(\varphi)\tan(\theta))
  466. \end{equation}
  467. Solar declination ($\theta$) can be calculated by
  468. \begin{equation}
  469. \theta=23.45\sin(\frac{2\pi}{365.25}(N-82.25))
  470. \end{equation}
  471. where $N$ is day of year.
  472. $f_{d}$ is calculated by a function of the diffuse fraction which
  473. is not implemented in current wheat module, (i.e. $f_{d}$ = 1).
  474. \subsection{Actual daily biomass accumulation}
  475. The actual daily biomass accumulation ($\Delta Q$) results from water
  476. limitation applied on the potential radiation-driven biomass accumulation
  477. ($\Delta Q_{r}$). This water-limited biomass ($\Delta Q_{w}$) is
  478. a function of the ratio between the daily water uptake ($W_{u}$,
  479. \autoref{eq:WaterUpdate}) and demand ($W_{d}$, \autoref{eq:soilWaterDemand-1})
  480. capped by
  481. \begin{equation}
  482. \Delta Q_{w}=\Delta Q_{r}f_{w,\,photo}=\Delta Q_{r}\frac{W_{u}}{W_{d}}\label{eq:WaterStressBiomassProduction-1}
  483. \end{equation}
  484. where $f_{w,\,photo}$ is the water stress factor affecting photosynthesis
  485. (\autoref{eq:swstressphoto}); $W_{u}$ is the actual daily water
  486. uptake from the root system (which corresponds to the soil water supply
  487. ($W_{s}$) capped by $W_{d}$), $W_{d}$ is the soil water demand
  488. of Leaf and Head parts (\autoref{sec:Crop-Water-Relations}).
  489. When the soil water is non-limiting ($f_{w,\,photo}$ = 1, i.e. $W_{d}\geq W_{s}$),
  490. biomass accumulation is limited by the radiation ($\Delta Q=\Delta Q_{r}$,
  491. \autoref{eq:actualBiomassProduction}). When the soil water is limiting,
  492. biomass accumulation is limited by water supply ($\Delta Q=\Delta Q_{w}$).
  493. The water demand ($W_{d}$, in mm) corresponds to the amount of water
  494. the crop would have transpired in the absence of soil water constraint,
  495. and is calculated from the potential biomass accumulation from RUE
  496. ($\Delta Q_{r}$, \autoref{eq:BiomassProduction}). Following \citet{sinclair1986waterand},
  497. transpiration demand is modeled as a function of the current day's
  498. crop growth rate, estimated by the potential biomass accumulation
  499. associated with intercepted radiation ($\Delta Q_{r}$, see \autoref{eq:BiomassProduction}),
  500. divided by the transpiration efficiency.
  501. \begin{equation}
  502. W_{d}=\frac{\Delta Q_{r}-R}{TE}\label{eq:soilWaterDemand-1}
  503. \end{equation}
  504. where $R$ is respiration rate and equals to zero in the current version
  505. of APSIM-Wheat, $TE$ is transpiration efficiency (\autoref{eq:TranspirationEfficiency}).
  506. See \autoref{sec:Crop-Water-Relations} for more details about water
  507. demand and supply. \medskip{}
  508. The daily biomass accumulation ($\Delta Q$) corresponds to dry matter
  509. above ground biomass is limited by the radiation interception ($\Delta Q_{r}$,
  510. \autoref{eq:BiomassProduction}) or by soil water deficiency ($\Delta Q_{w}$,
  511. \autoref{eq:WaterStressBiomassProduction}), so that daily biomass
  512. accumulation can be expressed as:
  513. \begin{equation}
  514. \Delta Q=\begin{cases}
  515. \Delta Q_{r}\qquad & W_{u}=W_{d}\\
  516. \Delta Q_{w}\qquad & W_{u}<W_{d}
  517. \end{cases}\label{eq:actualBiomassProduction}
  518. \end{equation}
  519. where $W_{s}$ is water supply, $W_{d}$ is the soil water demand
  520. from the shoot, limited by radiation interception (\autoref{sub:Crop-water-demand}).
  521. In the current APSIM-Wheat, $W_{d}$ is actually only directly affected
  522. by the soil water demand of the leaf (\autoref{sub:Crop-water-demand}).
  523. $W_{u}$ and $W_{d}$ are calculated by soil module of APSIM.
  524. \section{Biomass partitioning and re-translocation}
  525. \subsection{Biomass partitioning}
  526. In the wheat module, wheat is divided into four components or parts:
  527. \texttt{Root}, \texttt{Heat}, \texttt{Leaf} and \texttt{Stem} (\autoref{fig:WheatClassStructure}),
  528. and is derived from a more generic plant module (meaning that it has
  529. some parts not used or has a terminology, better adapted to other
  530. crops). \texttt{Leaf} includes only leaf blades. \texttt{Stem} is
  531. defined in a functional rather than a morphological manner and includes
  532. plant stems, leaf sheaths and stem-like petioles (not applicable for
  533. wheat). \texttt{Head} is divided into \texttt{Grain} and \texttt{Pod}
  534. (which correspond to spike without the grain). Then grain are separated
  535. into \texttt{Meal} and \texttt{Oil} (not used). The structure of wheat
  536. parts is shown in \autoref{fig:WheatClassStructure}.
  537. \begin{figure}[h]
  538. \begin{centering}
  539. \includegraphics[height=6cm]{figure/wdBiomassPartition}
  540. \par\end{centering}
  541. \caption{\label{fig:WheatClassStructure}The hierarchical structure of wheat
  542. parts. Texts in the parentheses are classes of parts. The gray box
  543. indicates a plant part not used in wheat.}
  544. \end{figure}
  545. On the day of emergence, biomass in plant parts (\texttt{Root}, \texttt{Head},
  546. \texttt{Leaf}, \texttt{Stem}, \texttt{Pod}, \texttt{Meal} and \texttt{Oil})
  547. are initialized by \texttt{root\_dm\_init} (set at 0.01 g plant\textsuperscript{-1}
  548. in the wheat.xml file), \texttt{leaf\_dm\_init} (0.003 g plant\textsuperscript{-1}),
  549. \texttt{stem\_dm\_init} (0.0016 g plant\textsuperscript{-1}), \texttt{pod\_dm\_init}
  550. (0 g plant\textsuperscript{-1}), \texttt{meal\_dm\_init} (0 g plant\textsuperscript{-1}),
  551. \texttt{oil\_dm\_init} (0 g plant\textsuperscript{-1}), respectively.
  552. Daily biomass production (\autoref{eq:actualBiomassProduction}) is
  553. then partitioned to different plant parts in different ratios that
  554. vary with crop stage. Overall, Root biomass are calculated with a
  555. shoot:root ratio from the above-ground biomass ($\Delta Q$; \autoref{fig:BiomassPartition}).
  556. Then the above-ground biomass are partitioned into the different plant
  557. parts hierarchically, with biomass being attributed first to \texttt{Head},
  558. then \texttt{Leaf} and finally \texttt{Stem}. This means that all
  559. parts might not have the biomass demand satisfied if the biomass production
  560. is limited.
  561. \begin{figure}[h]
  562. \begin{centering}
  563. \includegraphics[height=4.5cm]{figure/wdBiomassPartitioning}
  564. \par\end{centering}
  565. \caption{\label{fig:BiomassPartition}Biomass partition rules in the APSIM-Wheat
  566. module. Texts in the parentheses are partitioning methods of different
  567. organ types. The above-ground biomass ($\Delta Q$) is used to calculate
  568. \texttt{Root} biomass based on a shoot:root ratio, and is then partition
  569. to (1) \texttt{Head} based on the demand from \texttt{Pod} and \texttt{Grain},
  570. and then (2) \texttt{Leaf }(proportion of the remaining biomass),
  571. and (3) \texttt{Stem}. Re-translocation occurs during grain filling,
  572. when the biomass accumulation doesn't satisfy \texttt{Head} demand.
  573. Biomass from \texttt{Stem} and \texttt{Pod} are then used to satisfy
  574. the \texttt{Head} demand (\texttt{Pod} and \texttt{Grain}).}
  575. \end{figure}
  576. \subsection{Biomass partitioning to \texttt{Root}}
  577. Firstly, some biomass are allocated to the root as a ratio of daily
  578. available biomass ($\Delta Q$, \autoref{eq:BiomassProduction}).
  579. The so-called 'magic' fraction of biomass going to \texttt{Root} is
  580. calculated from a stage-dependent function, but is independent on
  581. pedo-climatic factors (\autoref{fig:wdroothootRatio}). All biomass
  582. in the \texttt{Root} is considered as structural fraction, meaning
  583. that it cannot be re-translocated to other parts later on.
  584. \begin{equation}
  585. \Delta Q_{root}=\Delta Q\times R_{Root:Shoot}\label{eq:RootBiomass}
  586. \end{equation}
  587. where $\Delta Q_{root}$ is the daily increment in \texttt{Root} biomass;
  588. and $R_{Root:Shoot}$ is the ratio root:shoot biomass, which is defined
  589. by x\_sta\texttt{x\_stage\_no\_partition} and \texttt{y\_ratio\_root\_shoot}
  590. in wheat.xml (\autoref{fig:wdroothootRatio}).
  591. \texttt{(}which is specified in wheat.xml )
  592. <<wdroothootRatio,fig.cap='Relationship between ratio of root and shoot and growth stage.'>>=
  593. p <- wdVisXY(wheat_xml,
  594. "x_stage_no_partition", "y_ratio_root_shoot",
  595. xlab = "Stage",
  596. ylab = "Ratio of root and shoot")
  597. print(p)
  598. @
  599. \subsection{Biomass partitioning to \texttt{Head} (\texttt{Pod}, \texttt{Meal}
  600. and \texttt{Oil }(not applicable in this version))}
  601. Then all or part of available biomass ($\Delta Q$) are partitioned
  602. into \texttt{Heads} according to total demand of \texttt{Heads} (\texttt{Meal},
  603. \texttt{Oil} and \texttt{Pod}). \texttt{Meal} and \texttt{Pod} demands
  604. are calculated by \autoref{eq:MealDemand} and \autoref{eq:GrainDemand}.
  605. \texttt{Oil} demand always equals to zero in the current version of
  606. the APSIM-Wheat module. Biomass directly partitioned in \texttt{Pod}
  607. or \texttt{Grain} is considered as structural and cannot be re-translocated,
  608. however the biomass providing from re-translocation is accumulated
  609. as non-structural biomass. The \texttt{Pod} non-structural biomass
  610. can then be re-translocated into \texttt{Grain} (See \autoref{sub:Re-translocation}).
  611. \begin{equation}
  612. \begin{array}{c}
  613. \Delta Q_{head}=\min(\Delta Q,\,D_{grain}+D_{pod})\\
  614. \Delta Q_{grain}=\frac{D_{g}}{D_{head}}\Delta A_{head}\\
  615. \Delta Q_{pod}=\frac{D_{p}}{D_{head}}\Delta A_{head}
  616. \end{array}\label{eq:HeadBiomass}
  617. \end{equation}
  618. where $\Delta Q_{head}$ is the daily available biomass for \texttt{Head},
  619. $D_{head}$, $D_{grain}$and $D_{pod}$ are demands for \texttt{Head},
  620. \texttt{Grain} and \texttt{Pod}, respectively (see \autoref{sub:Grain-(meal)-demand}
  621. and \autoref{sub:Pod-demand}). $\Delta Q_{grain}$ and $\Delta Q_{pod}$
  622. are biomass increment of \texttt{Grain} and \texttt{Pod}, respectively.
  623. \subsection{Biomass partitioning to \texttt{Leaf}}
  624. Then, the remaining biomass (after the partitioning to the \texttt{Heads})
  625. are partitioned into \texttt{Leaf} based on a stage dependent function
  626. (\autoref{fig:wdFractionLeaf}). \texttt{Leaf} biomass is considered
  627. as structural and thus cannot be re-mobilised.
  628. \begin{equation}
  629. \Delta Q_{leaf}=(\Delta Q-\Delta Q_{head})\times F_{leaf}
  630. \end{equation}
  631. where $\Delta Q_{leaf}$ is the daily increment in \texttt{Leaf} biomass;
  632. and $F_{leaf}$ is the fraction of available biomass partitioned to
  633. the leaf, which is defined by \texttt{x\_stage\_no\_partition} and
  634. \texttt{y\_frac\_leaf} in wheat.xml (\autoref{fig:wdFractionLeaf}).
  635. <<wdFractionLeaf,fig.cap='Relationship between fraction of leafLeaf and growth stage.'>>=
  636. p <- wdVisXY(wheat_xml,
  637. "x_stage_no_partition", "y_frac_leaf",
  638. xlab = "Stage",
  639. ylab = "Fraction of leaf")
  640. print(p)
  641. @
  642. \subsection{Biomass partitioning to \texttt{Stem}}
  643. Finally, the whole remaining biomass (if any) are partitioned into
  644. \texttt{Stem} (\autoref{fig:BiomassPartition}). Until the stage ``start
  645. of grain filling'', 65\% of this biomass is distributed to structural
  646. biomass (\autoref{fig:wdStemGrowthStructuralFractionStage}), while
  647. remaining 35\% is allocated in un-structural biomass. Afterwards,
  648. all new biomass allocated to \texttt{Stem} is for non-structural biomass
  649. (which can re-mobilised).
  650. \begin{equation}
  651. \Delta Q_{stem}=\Delta Q-\Delta Q_{head}-\Delta Q_{leaf}
  652. \end{equation}
  653. \begin{equation}
  654. \Delta Q_{stem.\,structural}=\Delta Q_{stem}\times h_{structual}
  655. \end{equation}
  656. \begin{equation}
  657. \Delta Q_{stem.\,non-structural}=\Delta Q_{stem}\times(1-h_{structual})\label{eq:StemNonStructural}
  658. \end{equation}
  659. where $\Delta Q_{stem}$ is the daily increment in \texttt{Stem} biomass;
  660. $\Delta Q_{stem.\,structural}$ is the structural biomass of \texttt{Stem};
  661. $\Delta Q_{stem.\,non-structural}$ is the non-structural biomass
  662. of \texttt{Stem}; and $h_{structual}$ is the fraction of \texttt{Stem}
  663. biomass distributed to structural biomass which depends on the growth
  664. stage (S). $h_{structual}$ is specified by \texttt{stemGrowthStructuralFraction}
  665. and \texttt{stemGrowthStructuralFractionStage} in wheat.xml, with
  666. a default value of 0.65 before beginning of grain filling and 0 after.
  667. <<wdStemGrowthStructuralFractionStage,fig.cap='Relationship between fraction of structural and unstructural biomass in Stem.'>>=
  668. p <- wdStemGrowthStructuralFraction()
  669. print(p)
  670. @
  671. \subsection{Re-translocation\label{subsec:Re-translocation}}
  672. If the supply in assimilate (daily biomass increase) is insufficient
  673. to meet \texttt{Grain} demand, then re-translocation may occur to
  674. meet the shortfall (\autoref{fig:BiomassPartition}). The biomass
  675. re-translocation first occurs from the \texttt{Stem} non-structural
  676. biomass. From the start of grain filling, the wheat module allows
  677. a total re-translocation of up to 20\% of \texttt{Stem} biomass per
  678. day. If required, biomass can then be re-translocated from the \texttt{Pod}
  679. non-structural biomass. The re-translocated biomass is used to fulfill
  680. the \texttt{Grain} and \texttt{Pod} demands (\autoref{sub:Grain-(meal)-demand}
  681. and \autoref{sub:Pod-demand}) and is accumulated as non-structural
  682. biomass.
  683. \begin{equation}
  684. D_{diff,\,head}=(D_{grain}-\text{\ensuremath{\Delta}}Q_{grain})+(D_{pod}-\Delta Q_{pod})
  685. \end{equation}
  686. where $D_{diff,\,head}$ is the unfulfilled demand from the plant,
  687. $D_{grain}$ and $D_{pod}$ are the demands from \texttt{Grain} and
  688. \texttt{Pod} (\autoref{sub:Grain-(meal)-demand} and \autoref{sub:Pod-demand}),
  689. and $\text{\ensuremath{\Delta}}Q_{grain}$ and $\Delta Q_{pod}$ are
  690. the daily increments in biomass accumulated to \texttt{Grain} and
  691. \texttt{Pod} (before re-translocation; \autoref{eq:HeadBiomass}).
  692. \begin{equation}
  693. \Delta Q_{retrans,\,stem}=\min(D_{diff},\,Q_{stem.\,non-structural}\times20\%)
  694. \end{equation}
  695. where $\Delta Q_{retrans,\,stem}$ is the dry biomass re-translocated
  696. from \texttt{Stem}, and $Q_{stem.\,non-structural}$ is the non-structural
  697. part of the \texttt{Stem} biomass (\autoref{eq:StemNonStructural}).
  698. \begin{equation}
  699. D_{diff,\,head}=D_{diff,\,head}-\Delta Q_{retrans}
  700. \end{equation}
  701. where $D_{dff,\,head}$ is updated value of the unfulfilled demand
  702. from the head.
  703. \begin{equation}
  704. \Delta Q_{retrans,\,pod}=\min(D_{diff,\,head},\,Q_{pod,\,non-structural})
  705. \end{equation}
  706. where $\Delta Q_{retrans,\,pod}$ from pod is the dry biomass re-translocated
  707. from \texttt{Pod}, and $Q_{pod,\,non-structural}$ is the non-structural
  708. part of the \texttt{Pod} biomass.
  709. \begin{equation}
  710. D_{dff,\,head}=D_{diff,\,head}-\Delta Q_{retrans,\,pod}
  711. \end{equation}
  712. where $D_{dff,\,head}$ is updated value of the unfulfilled demand
  713. from the head.
  714. \begin{equation}
  715. \Delta Q_{retrans}=\Delta Q_{retrans,\,stem}+\Delta Q_{retrans,\,pod}
  716. \end{equation}
  717. where $\Delta Q_{retrans}$ is re-translocated biomass within the
  718. plant.
  719. \begin{equation}
  720. \Delta Q_{grain.\,non-structural=}\Delta Q_{retrans\,to\,grain}=\frac{D_{diff,\,grain}}{D_{diff,\,head}}\Delta Q_{retrans}
  721. \end{equation}
  722. \begin{equation}
  723. \Delta Q_{retrans\,to\,pod}=\frac{D_{diff,\,pod}}{D_{diff,\,head}}\Delta Q_{retrans}
  724. \end{equation}
  725. \begin{equation}
  726. \Delta Q_{pod.\,non-structural=}\Delta Q_{retrans\,to\,pod}-\Delta Q_{retrans,\,pod}
  727. \end{equation}
  728. where $\Delta Q_{grain.\,non-structural}$ and $\Delta Q_{pod.\,non-structural}$
  729. are the daily increment in the non-structural part of \texttt{Grain}
  730. and \texttt{Pod} biomass; $\Delta Q_{retrans\,to\,grain}$ and $\Delta Q_{retrans\,to\,pod}$
  731. to pod are the daily biomass re-translocated to \texttt{Grain} and
  732. \texttt{Pod}; $D_{diff,\,grain}$ and $D_{diff,\,pod}$ are the unfulfilled
  733. demand of \texttt{Grain} and \texttt{Pod}, which are calculated as
  734. ($D_{grain}-\Delta Q_{grain}$) and ($D_{pod}-\Delta Q_{pod}$), respectively.
  735. \section{Head development}
  736. \subsection{Grain number}
  737. The number of grains per plant ($N_{g}$) is determined by the stem
  738. weight at anthesis.
  739. \begin{equation}
  740. N_{g}=R_{g}W_{s}
  741. \end{equation}
  742. where $W_{s}$ is the stem dry weight at anthesis, $R_{g}$ is the
  743. grain number per gram stem which is specified by \texttt{grain\_per\_gram\_stem}
  744. in wheat.xml, with default value at 25 grain g\textsuperscript{-1}.
  745. \subsection{\texttt{Grain} (\texttt{Meal}) demand\label{subsec:Grain-(meal)-demand}}
  746. The \texttt{Grain} demand (or \texttt{Meal} demand, $D_{g}$) is calculated
  747. in the growth phase \texttt{postflowering} (from flowering to end
  748. of grain filling \autoref{fig:PhenologWheatModule}). $D_{g}$ equals
  749. to 0 before flowering.
  750. \begin{equation}
  751. D_{g}=N_{g}R_{p}h_{g}(T_{mean})f_{N,\,grain}\label{eq:MealDemand}
  752. \end{equation}
  753. where $N_{g}$ is the grain number, $R_{p}$ is the potential rate
  754. of grain filling (0.0010 grain\textsuperscript{-1} d\textsuperscript{-1}
  755. from flowering to start of grain filling (\autoref{fig:PhenologWheatModule});
  756. 0.0020 grain\textsuperscript{-1} d\textsuperscript{-1} during grain
  757. filling (\autoref{fig:PhenologWheatModule})), $h_{g}(T_{mean})$
  758. is a function of daily mean temperature which affects the rate of
  759. grain filling (0-1) and is defined by parameters \texttt{x\_temp\_grainfill}
  760. and \texttt{y\_rel\_grainfill} in wheat.xml and linearly interpolated
  761. by APSIM (\autoref{fig:wdTempGrainFill}).
  762. $f_{N,\,grain}$ is a nitrogen factor to grain filling.
  763. \begin{equation}
  764. f_{N,\,grain}=\frac{h_{N,\ poten}}{h_{N,\ min}}h_{N,\,grain}\sum_{stem,\,leaf}\frac{C_{N}-C_{N,\,min}}{C_{N,\,crit}\times f_{c,\,N}-C_{N,\,min}}\qquad(0\leq f_{N,\,fill}\leq1)
  765. \end{equation}
  766. where $h_{N,\ poten}$ is the potential rate of grain filling which
  767. is specified by \texttt{potential\_grain\_n\_filling\_rate} in wheat.xml
  768. and has a default value of 0.000055 g grain\textsuperscript{-1} d\textsuperscript{-1};
  769. $h_{N,\ min}$ is the minimum rate of grain filling which is specified
  770. by \texttt{minimum\_grain\_n\_filling\_rate} in wheat.xml and has
  771. a default value of 0.000015 g grain\textsuperscript{-1} d\textsuperscript{-1};
  772. $h_{N,\,grain}$ is a multiplier for nitrogen deficit effect on grain,
  773. which is specified by \texttt{n\_fact\_grain} in wheat.xml and has
  774. a default value of 1; $C_{N}$ is the nitrogen concentration of \texttt{Stem}
  775. or \texttt{Leaf} parts; $C_{N,\,crit}$ and $C_{N,\,min}$ are critical
  776. and minimum nitrogen concentration, respectively, for \texttt{Stem}
  777. and \texttt{Leaf} parts. $C_{N,\,crit}$ and $C_{N,\,min}$ are functions
  778. of growth stage and nitrogen concentration which is defined by parameters
  779. \texttt{x\_stage\_code}, \texttt{y\_n\_conc\_min\_leaf}, \texttt{y\_n\_conc\_crit\_leaf},
  780. \texttt{y\_n\_conc\_min\_stem}, \texttt{y\_n\_conc\_crit\_stem} in
  781. wheat.xml and linearly interpolated by APSIM (\autoref{fig:wdNitrogenConcentration});
  782. and $f_{c,\,N}$ is a factor with a value of 1 (i.e. no impact) for
  783. Stem, and is depending on CO\textsubscript{2} for \texttt{Leaf} (\autoref{fig:wbCO2CritLeaf}).
  784. <<wdTempGrainFill,fig.cap='Response of the factor affecting the rate of grain filling in regards to daily mean temperature.'>>=
  785. p <- wdVisXY(wheat_xml,
  786. "x_temp_grainfill", "y_rel_grainfill",
  787. xlab = expression(paste("Daily mean temperature", ~"("*degree*"C)")),
  788. ylab = 'Factor affecting the rate of grain filling')
  789. print(p)
  790. @
  791. <<wbCO2CritLeaf,fig.cap='The CO2 modifier for critical nitrogen concentration of Leaf.'>>=
  792. p <- wdVisXY(wheat_xml,
  793. "x_co2_nconc_modifier", "y_co2_nconc_modifier",
  794. xlab = 'CO2 concentration',
  795. ylab = 'Critical nitrogen concentration of Leaf')
  796. print(p)
  797. @
  798. Finally, \texttt{Grain} demand is limited by the maximum grain size
  799. (corresponding to $D_{gm}$)
  800. \begin{equation}
  801. \begin{array}{c}
  802. D_{g}=\min(D_{g},\,D_{gm})\\
  803. D_{gm}=N_{g}S_{gm}-Q_{meal}\qquad(D_{gm}\geq0)
  804. \end{array}
  805. \end{equation}
  806. where $N_{g}$ is the grain number; $Q_{meal}$ is the dry weight
  807. of \texttt{Meal} part (i.e. the \texttt{Grains}); $S_{gm}$ is the
  808. maximum grain size which is specified by max\_grain\_size in wheat.xml
  809. and is a cultivar-specific parameter with 0.04 g for default value.
  810. \subsection{\texttt{Pod} demand\label{subsec:Pod-demand}}
  811. \texttt{Pod} demand ($D_{p}$) is calculated by \texttt{Grain} demand
  812. ($D_{g}$, \autoref{eq:MealDemand}) or daily biomass accumulation
  813. ($\Delta Q$, \autoref{eq:actualBiomassProduction})
  814. \begin{equation}
  815. D_{p}=\begin{array}{c}
  816. D_{g}h_{p}(S)\qquad D_{g}\text{>0}\\
  817. \Delta Qh_{p}(S)\qquad D_{g}\text{=0}
  818. \end{array}\label{eq:GrainDemand}
  819. \end{equation}
  820. where $h_{p}(S)$ is a function of the growth stage ($S$) and of
  821. the \texttt{Pod} demand fraction of $D_{g}$ or $\Delta Q$. $h_{p}(S)$
  822. is defined by parameters \texttt{x\_stage\_no\_partition} and \texttt{y\_frac\_pod}
  823. in wheat.xml and linearly interpolated by APSIM (\autoref{fig:wdFractionOfPod}).
  824. <<wdFractionOfPod,fig.cap='Pod demand over the stages (fraction of Grain demand or of daily biomass accumulation).'>>=
  825. p <- wdVisXY(wheat_xml,
  826. "x_stage_no_partition", "y_frac_pod",
  827. xlab = "Stage codes",
  828. ylab = "Pod demand fraction of grain demand \n or daily biomass accumulation")
  829. print(p)
  830. @
  831. \section{Leaf and node appearance and crop leaf area}
  832. In the current version of APSIM-Wheat, wheat plants are assumed to
  833. be uniclum (i.e. with a single stem), meaning that tillering is not
  834. simulated \textit{per se}. While a node corresponds to a phytomer
  835. on the main stem, it actually represents all the phytomers that appear
  836. simultaneously on different tillers (i.e. cohort of leaves) in the
  837. real world.
  838. \subsection{Node number}
  839. \subsubsection{Potential node appearance rate}
  840. At emergence (\autoref{fig:PhenologWheatModule}), a number of initial
  841. leaves are specified by \texttt{leaf\_no\_at\_emerg,} with a default
  842. value of 2. The initial number of nodes is the same as the initial
  843. number of leaves.
  844. During the tiller formation phase (i.e. up to 'Harvest rips', \autoref{fig:PhenologWheatModule}),
  845. nodes appear at a thermal time interval (the equivalent of a phyllochron
  846. for leaf appearance, $P_{n}$) that depends on the node number of
  847. the main stem ($n_{d}$, i.e. total number of nodes of the plant)
  848. at days after sowing ($d,$ days).
  849. \begin{equation}
  850. P_{n}=h_{P}(n_{d})\label{eq:phyllochron}
  851. \end{equation}
  852. where the function $h_{P}(n_{d})$ is defined by parameters \texttt{x\_node\_no\_app}
  853. and \texttt{y\_node\_app\_rate} in wheat.xml and is linearly interpolated
  854. by APSIM. In the current version of APSIM-Wheat, $P_{n}$ is set to
  855. 95 $^{\circ}\text{C}$ d, meaning that the 'node phyllochron' is supposed
  856. to be constant (\autoref{fig:wdPhyllochron}). No effect from water
  857. and N stress on leaf appearance is accounted for.
  858. <<wdPhyllochron,fig.cap="Relationship function ($h_{p}(n_{d})$) between 'node phyllochron' ($P_{n}$) and the node number at main stem ($n_{d}$).">>=
  859. p <- wdVisXY(wheat_xml,
  860. "x_node_no_app", "y_node_app_rate",
  861. xlab = "Node number at main stem",
  862. ylab = expression(paste("'Node Phyllochron", ~"("*degree*"Cd)'")))
  863. print(p)
  864. @
  865. \subsubsection{Potential node number (daily increase)}
  866. The potential daily increase in the node number of this unique stem
  867. ($\Delta n_{d,\,p}$) is calculated by the daily thermal time (\autoref{fig:wdThermalTime})
  868. and the 'node phyllochron', and occurs during the tiller formation
  869. phase (\autoref{fig:PhenologWheatModule}).
  870. \begin{equation}
  871. \Delta n_{d,\,p}=\frac{\Delta TT_{d}}{P_{n}}\label{eq:PotentialNodeNumber}
  872. \end{equation}
  873. where $\Delta TT_{d}$ is the thermal time ($^{\circ}\text{C}$d)
  874. at day $d$ (\autoref{fig:wdThermalTime} and \autoref{eq:thermaltime}).
  875. \subsection{Leaf number}
  876. \subsubsection{Potential leaf number (daily increase)}
  877. In the current version of APSIM-Wheat, all leaves appeared from a
  878. main and unique stem. The potential leaf number of each node is defined
  879. by a function ($h_{l}(n_{d})$) of node ($n_{d}$) number of day $d$
  880. (or 'node position'; $n_{d}$) (\autoref{fig:wdTillerNumberByNode}
  881. and \autoref{eq:LeafExpansionStress}). $h_{l}(n_{d})$ is specified
  882. by parameters \texttt{x\_node\_no\_leaf} and \texttt{y\_leaves\_per\_node}
  883. in wheat.xml and linearly interpolated by APSIM.
  884. At day $d$, the leaf number of the current node $n_{d}$ nodes ($N_{n,\,d,\,p}$)
  885. is determined by the potential leaf number $d-1$ for the past $n_{d-1}$
  886. nodes ($N_{n,\,d-1}$) and environmental stresses.
  887. \begin{equation}
  888. N_{d,\,p}=\min[N_{n,\,d-1},\;h_{l}(n_{d-1})]+[h_{l}(n_{d-1}+\Delta n_{d,\,p})-h_{l}(n_{d-1})]\times f_{S,\,expan}\label{eq:PotentialNodeNumberDaily}
  889. \end{equation}
  890. where $n_{d-1}$ is the node number at $d-1$ days after sowing, $\Delta n_{d,\,p}$
  891. is the potential daily increase of node number (\autoref{eq:PotentialNodeNumber}),
  892. $f_{S,\,expan}$ is the environmental stresses for canopy expansion.
  893. \begin{equation}
  894. f_{S,\,expan}=\min\{[\min(f_{N,\,expan},\;f_{p,\,expan})]^{2},\;f_{w,\,expan}\}\label{eq:LeafExpansionStress}
  895. \end{equation}
  896. where $f_{N,\,expan}$, $f_{p,\,expan}$ and $f_{w,\,expan}$ are
  897. the nitrogen, phosphorus and soil water stress for canopy expansion,
  898. respectively, which is explained in \autoref{sub:Phosphorus-stress}
  899. and \autoref{eq:WaterStressLeafExpansion}, respectively.
  900. The potential daily increase in leaf number for the whole plant is
  901. calculated based on the potential increase for the current node and
  902. the potential increase in node number ($\Delta n_{d,\,p}$, \autoref{eq:PotentialNodeNumber})
  903. as follows.
  904. \begin{equation}
  905. \Delta N_{d,\,p}=N_{n,\,d}\times\Delta n_{d,\,p}
  906. \end{equation}
  907. <<wdTillerNumberByNode,fig.cap='Number of leaves per node as a function of the number of nodes on the main stem and unique stem considered in APSIM-Wheat ($n_{d}$). This relation corresponds the function $h_{l}(n_{d})$.'>>=
  908. p <- wdVisXY(wheat_xml,
  909. "x_node_no_leaf", "y_leaves_per_node",
  910. xlab = "Node number on the main stem",
  911. ylab = "Number of leaves per node")
  912. print(p)
  913. @
  914. \subsubsection{Actual leaf number (daily increase)}
  915. The increase in actual leaf number ($\Delta N_{d,\ LAI}$) is calculated
  916. in relation to the fraction between the actual and stressed increase
  917. of leaf area index, as follow:
  918. \begin{equation}
  919. \Delta N_{d,\,LAI}=\Delta N_{d,\,p}\times h_{LAI}(\frac{\Delta\text{LAI}_{d}}{\Delta\text{LAI}_{d,\,s}})\label{eq:ActualLeafNumber}
  920. \end{equation}
  921. where $h_{LAI}$ is a function between the fraction of leaf area index
  922. and the fraction of leaf number which is defined by parameters \hyperlink{x_lai_ratio}{x\_lai\_ratio}
  923. and \hyperlink{y_leaf_no_frac}{y\_leaf\_no\_frac} in the wheat.xml
  924. and linearly interpolated by APSIM (\autoref{fig:wdLAINodeNumber}).
  925. <<wdLAINodeNumber,fig.cap='Relationship between fraction of leaf area index and fraction of leaf number.'>>=
  926. p <- wdVisXY(wheat_xml,
  927. "x_lai_ratio", "y_leaf_no_frac",
  928. xlab = 'Fraction of leaf area index',
  929. ylab = 'Fraction of leaf number')
  930. print(p)
  931. @
  932. \section{Leaf area expansion}
  933. \subsection{Actual leaf area (daily increase)}
  934. At emergence (\autoref{fig:PhenologWheatModule}), an initial leaf
  935. area is specified for each plant by \texttt{initial\_tpla}, with a
  936. default value of 200 mm\textsuperscript{2} plant\textsuperscript{-1}.
  937. During the tiller formation phase (\autoref{fig:PhenologWheatModule}),
  938. the daily increase in leaf area index ($\Delta\text{LAI}_{d}$) is
  939. the minimum between \textquoteleft stressed\textquoteright{} leaf
  940. area index ($\Delta\text{LAI}_{d,\,s}$) and the carbon-limited leaf
  941. area index ($\Delta\text{LAI}_{d,\,c}$).
  942. \begin{equation}
  943. \Delta\text{LAI}_{d}=\min(\Delta\text{LAI}_{d,\,s},\;\Delta\text{LAI}_{d,\,c})
  944. \end{equation}
  945. \subsection{\textquotedblleft Stressed\textquotedblright{} leaf area}
  946. During the tiller formation phase, the ``stressed'' daily increase
  947. in leaf area ($\Delta LAI_{d,s}$) is calculated as the potential
  948. increase in LAI reduced by environmental factors.
  949. \begin{equation}
  950. \Delta\text{LAI}_{d,\,s}=\Delta\text{LAI}_{d,\,p}\times\min(f_{w,\;expan},\,f_{N,\,expan},\,f_{P,\,expan})\label{eq:StressLeafArea}
  951. \end{equation}
  952. where $f_{N,\,expan}$, $f_{p,\,expan}$ and $f_{w,\,expan}$ are
  953. the nitrogen, phosphorus and soil water stress factors concerning
  954. canopy expansion, respectively (\autoref{eq:NStressLeafExpansion},
  955. \autoref{sub:Phosphorus-stress} and \autoref{eq:WaterStressLeafExpansion}).
  956. The potential daily increase of leaf area ($\Delta\text{LAI}_{d,\,p}$)
  957. is calculated by the potential daily increase in leaf number and leaf
  958. size.
  959. \begin{equation}
  960. \Delta\text{LAI}_{d,\,p}=\Delta N_{d,\,p}\times L_{n}\times D_{p}
  961. \end{equation}
  962. where $\Delta N_{d,\,p}$ is the potential increase in leaf number
  963. (for the whole plant), $D_{p}$ is the plant population, and $L_{n}$
  964. is the potential leaf area for leaves of the ``current'' node (this
  965. corresponds to the new potential leaf area produced by the different
  966. tillers in the real world) and depends on the node number on the main
  967. and unique stem considered by APSIM-Wheat.
  968. \begin{equation}
  969. L_{n}=h_{ls}(n_{d}+n_{0})
  970. \end{equation}
  971. where $n_{0}$ is the growing leaf number in the sheath (\texttt{node\_no\_correction}
  972. in wheat.xml) and equals to 2 as default value. The function $h_{ls}(n_{d})$
  973. is defined by parameters \texttt{x\_node\_no} and \texttt{y\_leaf\_size}
  974. in wheat.xml and linearly interpolated by APSIM (\autoref{fig:wdLeafSizeByNode}).
  975. <<wdLeafSizeByNode,fig.cap='Leaf area per node ($L_{n}$) in regards to the main stem node number $n_{0} + n_{d}$.'>>=
  976. p <- wdVisXY(wheat_xml,
  977. "x_node_no", "y_leaf_size ",
  978. xlab = "Main stem node number",
  979. ylab = expression(paste("Potential leaf area per node", ~"("*mm^2*")")))
  980. print(p)
  981. @
  982. \subsection{Carbon-limited leaf area}
  983. Leaf area related to carbon production is calculated by the increase
  984. in leaf dry weight ($\Delta Q_{leaf}$ \autoref{eq:actualBiomassProduction})
  985. and the maximum specific leaf area ($\text{SLA}_{max}$), which is
  986. related to leaf area index (LAI).
  987. \begin{equation}
  988. \Delta\text{LAI}_{d,\,c}=\Delta Q_{leaf}\times\text{SLA}_{max}
  989. \end{equation}
  990. \begin{equation}
  991. \text{SLA}{}_{max}=h_{SLA}(\text{LAI})
  992. \end{equation}
  993. This function is defined by parameters \texttt{x\_lai} and \texttt{y\_sla\_max}
  994. in wheat.xml and linearly interpolated by APSIM (\autoref{fig:wdSLA}).
  995. <<wdSLA,fig.cap='Relationship between maximum specific leaf area and leaf area index.'>>=
  996. p <- wdVisXY(wheat_xml,
  997. "x_lai", "y_sla_max",
  998. xlab = expression(paste("Leaf area index", ~"("*mm^2*" "*mm^{-2}*")")),
  999. ylab = expression(paste("Maximum specific leaf area", ~"("*mm^2*" "*g^{-1}*")")))
  1000. print(p)
  1001. @
  1002. \section{Root growth and distribution}
  1003. \subsection{Root depth growth}
  1004. Between germination and start of grain filling (\autoref{fig:PhenologWheatModule}),
  1005. the increase in root depth ($\Delta D_{r}$) is a daily rate multiplied
  1006. by a number of factors. Daily root depth growth ($\Delta D_{r}$)
  1007. is calculated by root depth growth rate ($R_{r}$), temperature factor
  1008. ($f_{rt}$), soil water factor ($f_{rw}$), and soil water available
  1009. factor ($f_{rwa}$) and root exploration factor ($\text{XF}(i)$).
  1010. \begin{equation}
  1011. \Delta D_{r}=R_{r}\times f_{rt}\times\min(f_{rw},\;f_{rwa})\text{\ensuremath{\times}XF}(i)\label{eq:rootDepthGrowth}
  1012. \end{equation}
  1013. where $i$ is the soil layer number in which root tips are growing.
  1014. Root depth growth rate is a function of growth stage, which is defined
  1015. by parameters \texttt{stage\_code\_list} and \texttt{root\_depth\_rate}
  1016. in the wheat.xml and is linearly interpolated by APSIM (\autoref{fig:wdRootGrowthRate}).
  1017. <<wdRootGrowthRate,fig.cap='Relationship between root depth growth rate ($R_{r}$) and growth stages.'>>=
  1018. p <- wdVisXY(wheat_xml,
  1019. "stage_code_list", "root_depth_rate",
  1020. xlab = "Stage codes",
  1021. ylab = "Root depth growth rate (mm/d)")
  1022. print(p)
  1023. @
  1024. The temperature factor ($f_{rt}$) is calculated by daily mean temperature.
  1025. \begin{equation}
  1026. f_{rt}=h_{rt}(\frac{T_{max}+T_{min}}{2})\label{eq:RootGrowthTemperature}
  1027. \end{equation}
  1028. where $h_{rt}$ is a function of factor of temperature on root length
  1029. and daily mean temperature and is defined by parameters \texttt{x\_temp\_root\_advance}
  1030. and \texttt{y\_rel\_root\_advance} in the wheat.xml which is linearly
  1031. interpolated by APSIM (\autoref{fig:wdTempRootFactor}).
  1032. <<wdTempRootFactor,fig.cap='Relationship ($h_{rt}$) between temperature factor on root length and daily mean temperature.'>>=
  1033. p <- wdVisXY(wheat_xml,
  1034. "x_temp_root_advance", "y_rel_root_advance",
  1035. xlab = expression(paste("Mean daily temperature", ~"("*degree*"C)")),
  1036. ylab = "Temperature factor on root length")
  1037. print(p)
  1038. @
  1039. The soil water factor ($f_{rw}$) is calculated by soil water stresses
  1040. of photosynthesis ($f_{w,\,photo}$, \autoref{eq:swstressphoto}).
  1041. \begin{equation}
  1042. f_{rw}=h_{rw}(f_{w,\,photo})
  1043. \end{equation}
  1044. where $h_{rw}$ is a function of soil-water factor affecting root
  1045. depth growth in response to soil water stress for photosynthesis.
  1046. This function is defined by parameters \texttt{x\_ws\_root} and \texttt{y\_ws\_root\_fac},
  1047. which are linearly interpolated by APSIM. The default value of $f_{rw}$
  1048. is 1, i.e. there is no soil water stress on root depth growth in current
  1049. APSIM-Wheat.
  1050. The soil water available factor ($f_{rwa}$) is calculated by fraction
  1051. of available soil water.
  1052. \begin{equation}
  1053. f_{rwa}=h_{rwa}(\text{FASW})\label{eq:Soilwateravailablefactor}
  1054. \end{equation}
  1055. where $h_{rwa}$ is a function of the fraction of available soil water
  1056. (FASW) is defined in wheat.xml by parameters \texttt{x\_sw\_ratio}
  1057. and \texttt{y\_sw\_fac\_root} which is linearly interpolated by APSIM
  1058. (\autoref{fig:wdWaterAvaiOnRoot}).
  1059. <<wdWaterAvaiOnRoot,fig.cap='Available soil water fraction ($f_{rwa}$) in response to the fraction of available soil water (FASW).'>>=
  1060. p <- wdVisXY(wheat_xml,
  1061. "x_sw_ratio", "y_sw_fac_root",
  1062. xlab = "Fraction of available soil water",
  1063. ylab = "Stress factor for root depth growth")
  1064. print(p)
  1065. @
  1066. The fraction of available soil water (FASW) is calculated by a fraction
  1067. of root dpeth in soil layer $i$ ($D_{r}(i)$) and depth of soil layer
  1068. $i$ ($D_{s}(i)$), and FASW at layer $i+1$ and $i$.
  1069. \begin{equation}
  1070. \text{FASW}=\frac{D_{r}(i)}{D_{s}(i)}\text{FASW}(i+1)+(1-\frac{D_{r}(i)}{D_{s}(i)})\text{FASW}(i)
  1071. \end{equation}
  1072. where $\text{FASW}(i)$ is the fraction of available soil water in
  1073. soil layer $i$. $D_{r}(i)$ is the root depth within the deepest
  1074. soil layer ($i$) where roots are present , $D_{s}(i)$ is the thickness
  1075. of this layer $i$, and
  1076. \begin{equation}
  1077. \text{FASW}(i)=\frac{\text{SW}(i)-\text{LL}(i)}{\text{DUL}(i)-\text{LL}(i)}
  1078. \end{equation}
  1079. where $\text{SW}(i)$ is the soil water content at layer $i$ (mm),
  1080. $\text{LL}(i)$ is the lower limit of plant-extractable soil water
  1081. in layer $i$ (mm), $\text{DUL}(i)$ is drained upper limit soil water
  1082. content in soil layer $i$ (mm). $\text{XF}(i)$, $\text{SW}(i)$,
  1083. $\text{LL}(i)$ and $\text{DUL}(i)$ are specified at the soil module
  1084. of APSIM simulation files.
  1085. Finally, \autoref{eq:rootDepthGrowth} is reduced to this function.
  1086. \begin{equation}
  1087. \Delta D_{r}=R_{r}\times f_{rt}\times f_{rwa}\text{\ensuremath{\times}XF}(i)\label{eq:rootDepthGrowth-1}
  1088. \end{equation}
  1089. Overall, root depth is constrained by the soil profile depth. The
  1090. optimum root expansion rate is 30 mm d\textsuperscript{-1} (\autoref{fig:wdRootGrowthRate}).
  1091. This can be limited by supra- or sub-optimal mean air temperatures
  1092. (\autoref{fig:wdTempRootFactor}). Dry soil can slow root depth progression
  1093. if the soil water content is less than 25\% of the extractable soil
  1094. water (drained upper limit - lower limit) in the layers they are about
  1095. to reach (\autoref{fig:wdWaterAvaiOnRoot}). The increase of root
  1096. depth through a layer can also be reduced by knowing soil constraints
  1097. (soil compression) through the use of the 0-1 parameter XF, which
  1098. is input for each soil layer. Root depth is used by APSIM to calculate
  1099. soil available water (e.g \autoref{sec:Crop-Water-Relations}).
  1100. \subsection{Root length}
  1101. Daily root length growth is calculated by daily growth of \texttt{Root}
  1102. biomass ($\Delta Q_{root}$, \autoref{eq:RootBiomass}) and specific
  1103. root length ($\text{SRL}$, defined by \texttt{specific\_root\_length}
  1104. in wheat.xml with a default value of 105000 mm g\textsuperscript{-1}).
  1105. \begin{equation}
  1106. \Delta L_{r}=\Delta Q_{root}\times\text{SRL}
  1107. \end{equation}
  1108. The daily root length growth ($\Delta L_{r}$) is distributed to each
  1109. soil layer $i$ according to root depth and soil water availability
  1110. in soil layer $i$.
  1111. \begin{equation}
  1112. \Delta D_{r}(i)=\frac{f_{rl}(i)}{\sum_{j=1}^{N}f_{rl}(j)}
  1113. \end{equation}
  1114. where $f_{rl}(i)$ is a factor of root length growth in soil layer
  1115. $i$.
  1116. \begin{equation}
  1117. f_{rl}(i)=f_{rwa}\times f_{b}(i)\text{\ensuremath{\times}XF}(i)\times\frac{D_{s}(i)}{D_{r}}\,
  1118. \end{equation}
  1119. where $\Delta L_{r}(i)$ is the daily root length growth for soil
  1120. layer $i$, $D_{s}(i)$ is the depth of the soil layer $i$, $D_{r}$
  1121. is total root depth from the previous day, $\text{XF}(i)$ is root
  1122. exploration factor in soil layer $i$, $f_{rwa}$ is soil water available
  1123. factor (\autoref{eq:Soilwateravailablefactor}), \textbf{$f_{b}(i)$
  1124. }is branch factor at layer $i$.
  1125. \begin{equation}
  1126. f_{b}(i)=h_{b}(\frac{L_{r}(i)}{D_{p}D_{s}(i)})
  1127. \end{equation}
  1128. where $L_{r}(i)$ is the root length in soil layer $i$, $D_{p}$
  1129. is plant population, $h_{b}$ is a function for branch factor that
  1130. is defined by parameters \texttt{x\_plant\_rld} and \texttt{y\_rel\_root\_rate}
  1131. in the wheat.xml and linearly interpolated by APSIM (\autoref{fig:wdRootBranching}).
  1132. <<wdRootBranching,fig.cap='Root branching factor in response to root branching.'>>=
  1133. p <- wdVisXY(wheat_xml,
  1134. "x_plant_rld", "y_rel_root_rate",
  1135. xlab = "Root branching (mm/mm3/plant)",
  1136. ylab = "Root branching factor")
  1137. print(p)
  1138. @
  1139. Root length has no effect on other traits in the current version of
  1140. APSIM-Wheat. It is just used by the root senescence routine.
  1141. \section{Senescence}
  1142. \subsection{Leaf number senescence}
  1143. The leaf senescence phase begins 40\% between floral initiation and
  1144. end of juvenile, and ends at harvest ripe (\autoref{fig:PhenologWheatModule}),
  1145. at which stage, all green leaves are dead. During leaf senescence
  1146. phase (\autoref{fig:PhenologWheatModule}), leaf number senescence
  1147. is calculated by daily thermal time ($\Delta TT$, \autoref{eq:thermaltime})
  1148. as follows:
  1149. \begin{equation}
  1150. \Delta N_{d,\,sen}=\Delta TT\times\frac{f_{sen,\,l}\times N_{d}}{r_{sen,\,l}}
  1151. \end{equation}
  1152. where $N_{d}$ is the total leaf number; $f_{sen,\,l}$ is the fraction
  1153. of the total leaf number senescing per main stem node and specified
  1154. by \texttt{fr\_lf\_sen\_rate} in wheat.xml (default value 0.035);
  1155. $r_{sen,\,l}$ is the rate of node senescence on main stem and specified
  1156. by \texttt{node\_sen\_rate} in wheat.xml (default value 60.0 $^{\circ}$Cd
  1157. node\textsuperscript{-1}).
  1158. \subsection{Leaf area senescence}
  1159. There are five causes of leaf senescence: age ($\text{\ensuremath{\Delta}LAI}_{sen,\,age}$),
  1160. water stress ($\text{\ensuremath{\Delta}LAI}_{sen,\,sw}$), light
  1161. intensity ($\text{\ensuremath{\Delta}LAI}_{sen,\,light}$), frost
  1162. ($\text{\ensuremath{\Delta}LAI}_{sen,\,frost}$) and heat ($\text{\ensuremath{\Delta}LAI}_{sen,\,heat}$).
  1163. The maximum of these causes is the day's total leaf area index senescence.
  1164. \begin{equation}
  1165. \text{\ensuremath{\Delta}LAI}_{sen}=\max(\text{\ensuremath{\Delta}LAI}_{sen,\,age},\;\text{\ensuremath{\Delta}LAI}_{sen,\,sw},\;\Delta\text{LAI}_{sen,\,light},\;\text{\ensuremath{\Delta}LAI}_{sen,\,frost},\;\text{\ensuremath{\Delta}LAI}_{sen,\,heat})
  1166. \end{equation}
  1167. Leaf area senescence caused by age corresponds to the leaf area of
  1168. the number of leaves senesced ($\Delta N_{d,\,sen}$) from the lowest
  1169. leaf position.
  1170. Leaf area senescence caused by soil water ($\text{\ensuremath{\Delta}LAI}_{sen,\,sw}$)
  1171. is calculated as follows.
  1172. \begin{equation}
  1173. \text{\ensuremath{\Delta}LAI}_{sen,\,sw}=k_{sen,\,sw}\times(1-f_{sw,\,photo})\times\text{LAI}
  1174. \end{equation}
  1175. where $k_{sen,\,sw}$ is the slope of the linear equation relating
  1176. to soil water stress to leaf senescence rate and is specified by \texttt{sen\_rate\_water}
  1177. in wheat.xml (default value 0.10); $f_{sw,\,photo}$ is soil water
  1178. stress for photosynthesis (\autoref{eq:swstressphoto}); LAI is the
  1179. leaf area index.
  1180. Leaf area senescence caused by light intensity ($\text{\ensuremath{\Delta}LAI}_{sen,\,light}$)
  1181. is calculated as follows:
  1182. \begin{equation}
  1183. \text{\ensuremath{\Delta}LAI}_{sen,\,light}=k_{sen,\,light}\times(\text{LAI}-\text{LAI}_{c,\,light})\times\text{LAI}\quad\text{LAI}>\text{LAI}_{c,\,light}\label{eq:SensLight}
  1184. \end{equation}
  1185. where $k_{sen,\,light}$ is sensitivity of leaf area senescence to
  1186. shading and is specified by \texttt{sen\_light\_slope} in wheat.xml
  1187. (default value 0.002); $\text{LAI}_{c,\,light}$ is the critical LAI
  1188. when shading is starting to cause leaf area senescence and is specified
  1189. by \texttt{lai\_sen\_light} in wheat.xml (default value 7).
  1190. The leaf area senescence caused by frost is a ratio of LAI.
  1191. \begin{equation}
  1192. \text{\ensuremath{\Delta}LAI}_{sen,\,frost}=k_{sen,\,frost}\text{\ensuremath{\times}LAI}\label{eq:SensFrost}
  1193. \end{equation}
  1194. where $k_{sen,\,frost}$ is a function of daily minimum temperature
  1195. and is defined by parameters \texttt{x\_temp\_senescence} and \texttt{y\_senescence\_fac}
  1196. in wheat.xml, which are linearly interpolated by APSIM. The default
  1197. value of $k_{sen,\,frost}$ is zero, i.e. there is no frost stress
  1198. in leaf area in the current APSIM-Wheat module.
  1199. Senescence by heat calculation has been added in APSIM 7.5. The leaf
  1200. area senescence by heat is a ratio of LAI \citep{asseng2011theimpact}.
  1201. \begin{equation}
  1202. \text{\ensuremath{\Delta}LAI}_{sen,\,heat}=k_{sen,\,heat}\times\text{LAI}\label{eq:SensHeat}
  1203. \end{equation}
  1204. where $k_{sen,\,heat}$ is a function of daily maximum temperature
  1205. which is defined by parameters \texttt{x\_maxt\_senescence} and \texttt{y\_heatsenescence\_fac}
  1206. in wheat.xml which are linearly interpolated by APSIM.
  1207. <<wdHeatSenescence,fig.cap='Fraction of senescence of leaf area index ($k_{sen,\\,heat}$) in response to maximum temperature.'>>=
  1208. p <- wdVisXY(wheat_xml,
  1209. "x_maxt_senescence", "y_heatsenescence_fac",
  1210. xlab = expression(paste("Maximum temperature", ~"("*degree*"C)")),
  1211. ylab = "Senescence fraction of LAI")
  1212. print(p)
  1213. @
  1214. The total leaf area of plant must be more than the minimum plant area
  1215. (\texttt{min\_tpla}), which has default value 5 mm$^{\text{2}}$ plant$^{\text{-1}}$.
  1216. When some leaves are senesced, only a small amount of nitrogen is
  1217. retained in the senesced leaf, the rest is made available for re-translocation
  1218. included into the \texttt{Stem} N pool (\autoref{sub:NitrogenPartitioningAndRetranslocation}).
  1219. The concentration of nitrogen in senesced material is specified in
  1220. wheat.xml.
  1221. \subsection{Biomass senescence}
  1222. Leaf biomass senescence $\Delta Q_{sl}$ is the ratio of leaf area
  1223. senescence ($\text{\ensuremath{\Delta}LAI}_{sen}$) with total the
  1224. green LAI at the time considered (LAI).
  1225. \begin{equation}
  1226. \Delta Q_{sl}=\Delta Q_{l}\frac{\text{\ensuremath{\text{\ensuremath{\Delta}LAI}_{sen}}}}{\text{LAI}}
  1227. \end{equation}
  1228. where $\Delta Q_{l}$ is the daily increase of leaf biomass.
  1229. \subsection{Root senescence}
  1230. A rate of 0.5\% of root biomass and root length is senesced each day
  1231. and detaches immediately being sent to the soil nitrogen module and
  1232. distributed as fresh organic matter in the profile.
  1233. \begin{equation}
  1234. \Delta Q_{sen,\,root}=\Delta Q_{root}\times f_{sen,\,root}
  1235. \end{equation}
  1236. where $\Delta Q_{sen,\,root}$ is the daily \texttt{Root} senesced
  1237. biomass, and $f_{sen,\,root}$ is the fraction of senesced root biomass,
  1238. which is defined in \texttt{x\_dm\_sen\_frac\_root} and \texttt{y\_dm\_sen\_frac\_root}
  1239. in wheat.xml (\autoref{fig:wdRootSens})
  1240. <<wdRootSens,fig.cap='Fraction of senescence of root biomass.'>>=
  1241. p <- wdVisXY(wheat_xml,
  1242. "x_dm_sen_frac_root", "y_dm_sen_frac_root",
  1243. xlab = 'Fraction of material senescence',
  1244. ylab = "Senescence fraction of Root biomass")
  1245. print(p)
  1246. @
  1247. \begin{equation}
  1248. \Delta L_{sen,\,root}=\Delta Q_{sen,\,root}\times\text{SRL}
  1249. \end{equation}
  1250. where $\Delta L_{sen,\,root}$ is the daily root length senescence,
  1251. and SRL is the specific root length.
  1252. Root senescence occurs in each of the soil layers where roots are
  1253. present, as a proportion of the total root length.
  1254. \begin{equation}
  1255. \Delta L_{sen,\,root}(i)=\Delta L_{sen,\,root}\times\frac{L_{r}(i)}{\sum_{j=1}^{i}L_{r}(j)}
  1256. \end{equation}
  1257. where $L_{sen,\,root}(i)$ is the root length senescence in soil layer
  1258. $i$, $L_{r}(i)$ is root length in layer $i$, and $\sum_{j=1}^{i}L_{r}(j)$is
  1259. the total root length for all the layers where root are present.
  1260. \section{Crop Water Relations\label{sec:Crop-Water-Relations}}
  1261. \subsection{Crop water demand\label{subsec:Crop-water-demand}}
  1262. Following \citet{sinclair1986waterand}, transpiration demand is modeled
  1263. as a function of the current day's potential crop growth rate, estimated
  1264. by the potential biomass accumulation associated with intercepted
  1265. radiation ($\Delta Q_{r}$, see \autoref{eq:BiomassProduction}),
  1266. divided by the transpiration efficiency.
  1267. \begin{equation}
  1268. W_{d}=\frac{\Delta Q_{r}-R}{TE}\label{eq:soilWaterDemand}
  1269. \end{equation}
  1270. where $R$ is respiration rate and equal to zero in the current version
  1271. of APSIM-Wheat, $TE$ is transpiration efficiency. $TE$ is related
  1272. to the daylight averaged vapour pressure deficit ($VPD$, \autoref{eq:VPD})
  1273. and a multiple of CO\textsubscript{2} factor \citep{reyenga1999modelling}.
  1274. \begin{equation}
  1275. TE=f_{c,\,TE}\frac{f_{TE}}{VPD}\label{eq:TranspirationEfficiency}
  1276. \end{equation}
  1277. where $f_{c,\,TE}$ is the CO\textsubscript{2} factor for transpiration
  1278. efficiency, which is a function of carbon dioxide concentration and
  1279. is defined by parameters \texttt{x\_co2\_te\_modifier} and \texttt{y\_co2\_te\_modifier}
  1280. in wheat.xml and linearly interpolated by APSIM (\autoref{fig:wdCO2TE}).
  1281. $f_{c,\,TE}$ linearly increases from 1 to 1.37 when CO\textsubscript{2}
  1282. concentration increases from 350 ppm to 700 ppm \citep{reyenga1999modelling}.
  1283. $f_{TE}$ is the coefficient of transpiration efficiency, which values
  1284. are defined in wheat.xml by parameters \texttt{transp\_eff\_cf} in
  1285. wheat.xml for the different growth stages and are linearly interpolated
  1286. by APSIM (\autoref{fig:wdCoefficientOfTE}).
  1287. <<wdCO2TE,fig.cap='Relationship between factor of carbon dioxide for transpiration efficiency ($f_{c,\\, TE}$) and CO2 concentration.'>>=
  1288. p <- wdVisXY(wheat_xml,
  1289. "x_co2_te_modifier", "y_co2_te_modifier",
  1290. xlab = "Carbon dioxide concentration",
  1291. ylab = "Transpiration efficiency factor")
  1292. print(p)
  1293. @
  1294. <<wdCoefficientOfTE,fig.cap='Change in the coefficient of transpiration efficiency with growth stages.'>>=
  1295. p <- wdVisXY(wheat_xml,
  1296. "stage_code", "transp_eff_cf",
  1297. xlab = "Stage",
  1298. ylab = "Coefficient of \ntranspiration efficiency")
  1299. print(p)
  1300. @
  1301. $VPD$ is the vapour pressure deficit, which is estimated using the
  1302. method proposed by \citet{tanner1983efficient} and only requires
  1303. daily maximum and minimum temperatures.
  1304. \begin{equation}
  1305. VPD=f_{v}[6.1078\times\exp(\frac{17.269\times T_{max}}{237.3+T_{max}})-6.1078\times\exp(\frac{17.269\times T_{min}}{237.3+T_{min}})]\label{eq:VPD}
  1306. \end{equation}
  1307. In this method, it is assumed that the air is saturated at the minimum
  1308. temperature. The saturated vapour pressure is calculated at both the
  1309. maximum and minimum temperatures, and the default vapour pressure
  1310. deficit for the day is taken as 75\% ($f_{v}$, defined by \texttt{svp\_fract}
  1311. in wheat.xml) of the difference between these two vapour pressures.
  1312. Crop water demand is capped to below a given multiple of potential
  1313. ET (taken as Priestly-Taylor Eo from the water balance module) as
  1314. specified by \hyperlink{eo_crop_factor_default}{eo\_crop\_factor\_default}
  1315. in the wheat.xml file (default value 1.5). This limits water use to
  1316. reasonable values on days with high VPD or in more arid environments.
  1317. \subsection{Potential and actual extractable soil water}
  1318. Potential and actual extractable soil water is the sum of root water
  1319. contents available to the crop from each profile layer occupied by
  1320. roots. If roots are only partially through a layer available soil
  1321. water is scaled to the portion that contains roots. Potential extractable
  1322. soil water ($\text{ESW}{}_{p}$) is the difference between drained
  1323. upper limit soil water content (DUL) and lower limit of plant-extractable
  1324. soil water (LL) for each soil layer. The actual extractable soil water
  1325. ($esw_{a}$) is the difference between the soil water content (SW)
  1326. and lower limit of plant-extractable soil water (LL) for each soil
  1327. layer.
  1328. \begin{equation}
  1329. \begin{array}{c}
  1330. \text{ESW}_{p}(i)=\text{DUL}(i)-\text{LL}(i)\\
  1331. \text{ESW}a(i)=\text{SW}(i)-\text{LL}(i)\\
  1332. \text{ESW}_{p}=\sum_{i=1}^{I}[\text{DUL}(i)-\text{LL}(i)]\\
  1333. \text{ESW}_{a}=\sum_{i=1}^{I}[\text{SW}(i)-\text{LL}(i)]
  1334. \end{array}\label{eq:SoilWaterESW}
  1335. \end{equation}
  1336. where $i$ indicates soil layers (where roots are present), and $I$
  1337. indicates the deepest soil water of root presented. Similar variables
  1338. are calculated for the entire soil profile (i.e. roots may not occupy
  1339. all the layers).
  1340. \begin{equation}
  1341. \begin{array}{c}
  1342. \text{PAWC}=\sum_{i}^{N_{s}}[\text{DUL}(i)-\text{LL}(i)]\\
  1343. \text{ESW}=\sum_{i}^{N_{s}}[\text{SW}(i)-\text{LL}(i)]
  1344. \end{array}
  1345. \end{equation}
  1346. where $i$ indicates soil layers, $N_{s}$ indicates the number of
  1347. soil layers, and PAWC is the plant available water capacity.
  1348. \subsection{Crop water supply, i.e. potential soil water uptake}
  1349. The APSIM-Wheat module can be coupled to either the SWIM2 module (see
  1350. module documentation) or the SOILWAT2 module (default). When the APSIM-Wheat
  1351. module is coupled to APSIM-SOILWAT2, potential soil water uptake (or
  1352. water supply, $W_{s}$) is calculated using the approach first advocated
  1353. by Monteith (1986). Crop water supply is considered as the sum of
  1354. potential root water uptake from each profile layer occupied by root.
  1355. If roots are only partially through a layer available soil water is
  1356. scaled to the portion that contains roots. The potential rate of extraction
  1357. in a layer is calculated using a rate constant (KL) as actual extractable
  1358. soil water. The KL defines the fraction of available water able to
  1359. be extracted per day. The KL factor is empirically derived, incorporating
  1360. both plant and soil factors which limit rate of water uptake. Root
  1361. water extraction values (KL) must be defined for each combination
  1362. of crop species and soil type.
  1363. \begin{equation}
  1364. \begin{array}{c}
  1365. \begin{array}{cc}
  1366. W_{s}(i) & =\text{KL}(i)[\text{SW}(i)-\text{LL}(i)]\qquad\qquad if\,i\leq I-1\\
  1367. & =\frac{D_{r}(i)}{D_{s}(i)}\text{KL}(i)[\text{SW}(i)-\text{LL}(i)]\qquad\qquad if\,i=I
  1368. \end{array}\\
  1369. W_{s}=\sum_{i=1}^{I}W_{s}(i)
  1370. \end{array}\label{eq:WaterSupply}
  1371. \end{equation}
  1372. where $i$ is the soil layer, $I$ is the deepest soil layer where
  1373. roots are present, $W_{s}(i)$ is the water supply available from
  1374. layer $i$, $W_{s}$ is the crop water supply, $\text{SW}(i)$ is
  1375. the soil water content in layer $i$, $\text{LL}(i)$ is the lower
  1376. limit of plant-extractable soil water in layer $i$, $\text{KL}(i)$
  1377. is the root water extraction values in layer $i$, $D_{r}(i)$ is
  1378. the root depth within the soil layer ($i$) where roots are present,
  1379. and $D_{s}(i)$ is the thickness of this layer $i$.
  1380. \subsection{Actual soil water uptake}
  1381. The actual rate of water uptake is the lesser of the potential soil
  1382. water supply ($W_{s}$, \autoref{eq:WaterSupply}) and the soil water
  1383. demand ($W_{d}$, \autoref{eq:soilWaterDemand}), which is determining
  1384. whether biomass production is limited by radiation or water uptake
  1385. (\autoref{eq:actualBiomassProduction})
  1386. \begin{equation}
  1387. W_{u}=\min(W_{d},\,W_{s})\label{eq:WaterUpdate}
  1388. \end{equation}
  1389. If the potential soil water supply (accessible by the roots) exceeds
  1390. the crop water demand, then the actual soil water uptake ($W_{u}$)
  1391. is removed from the occupied layers in proportion to the values of
  1392. potential root water uptake in each layer. If the computed soil water
  1393. supply from the profile is less than the demand then, and the actual
  1394. root water uptake from a layer is equal to the computed potential
  1395. uptake. If there are not soil water supply and demand, soil water
  1396. update equals to zero.
  1397. \begin{equation}
  1398. \begin{array}{c}
  1399. \Delta W_{s}(i)=-W_{s}(i)\times\frac{W_{d}}{W_{s}}\qquad if\;W_{s}<W_{d}\\
  1400. \Delta W_{s}(i)=-W_{s}(i)\qquad if\;W_{s}>W_{d}\\
  1401. \Delta W_{s}(i)=0\qquad if\;W_{s}=W_{d}=0
  1402. \end{array}
  1403. \end{equation}
  1404. where $\Delta W_{s}(i)$ is the daily change in soil water content
  1405. at layer $i$ (where roots are present), and $W_{s}(i)$ is the water
  1406. supply available from layer $i$ (\autoref{eq:WaterSupply}) .
  1407. \subsection{Soil water stresses affecting plant growth}
  1408. Soil water deficit factors are calculated to simulate the effects
  1409. of water stress on different plant growth-and-development processes.
  1410. Three water deficit factors are calculated which correspond to four
  1411. plant processes, each having different sensitivity to water stress
  1412. i.e. photosynthesis, leaf expansion, and phenology.
  1413. Each of these factors is capped between 0 and 1, where the value of
  1414. 0 corresponds to a complete stress, while 1 corresponds to no stress.
  1415. Leaf expansion is considered more sensitive to stress than photosynthesis,
  1416. while soil water has no impact on crop phenology in the current APSIM-Wheat
  1417. version.
  1418. \subsubsection{Phenology}
  1419. Soil water stress of phenology is determined by the soil water deficiency.
  1420. \begin{equation}
  1421. f_{W,\,pheno}=h_{w,\,pheno}(\frac{esw_{a}}{esw_{p}})\label{eq:SoilWaterStress}
  1422. \end{equation}
  1423. where $esw_{a}$ is the actual extractable soil water in root layers,
  1424. $esw_{p}$ is the potential extractable soil water in root layers.
  1425. $h_{w,\,pheno}$ is a function of soil water available ratio and soil
  1426. water stress, which is defined by parameters \texttt{x\_sw\_avail\_ratio}
  1427. and \texttt{y\_swdef\_pheno} (default value 1) in wheat.xml and linearly
  1428. interpolated by APSIM. In the current version of APSIM-Wheat module,
  1429. no soil water stress for phenology is applied (\autoref{fig:wdSoilWaterStressPhenology}).
  1430. The soil water stress of phenology for flowering (\texttt{x\_sw\_avail\_ratio\_flowering}
  1431. and \texttt{y\_swdef\_pheno\_flowering}) and grain filling (\texttt{x\_sw\_avail\_ratio\_start\_grain\_fill}
  1432. and \texttt{y\_swdef\_pheno\_start\_grain\_fill}) phases are calculated
  1433. in the source code, but don't have influence on the phenology of wheat
  1434. in the current APSIM-Wheat version (default value of 1).
  1435. <<wdSoilWaterStressPhenology,fig.cap='Relationship between soil water stress factor affecting phenology ($f_{W,\\, pheno}$) and the ratio of available soil water ($\\frac{esw_{a}}{esw_{p}}$).'>>=
  1436. p <- wdVisXY(wheat_xml,
  1437. "x_sw_avail_ratio", "y_swdef_pheno ",
  1438. xlab = "Ratio of available soil water",
  1439. ylab = "Soil water stress \nof phenology")
  1440. print(p)
  1441. @
  1442. \subsubsection{Photosynthesis}
  1443. Soil water stress of biomass accumulation ($f_{w,\,photo}$) is calculated
  1444. as follows.
  1445. \begin{equation}
  1446. f_{w,\,photo}=\frac{W_{u}}{W_{d}}\label{eq:swstressphoto}
  1447. \end{equation}
  1448. where $W_{u}$ is the total daily water uptake from root system (\autoref{eq:WaterUpdate}),
  1449. $W_{d}$ is the soil water demand of \texttt{Leaf} and \texttt{Head}
  1450. parts (\autoref{eq:soilWaterDemand}).
  1451. Finally, the potential biomass production (radiation-limited$\Delta Q$)
  1452. can limit by water uptake ($f_{w,\,photo}<1$, i.e. when $W_{u}<W_{d}$),
  1453. or not (when $f_{w,\,photo}=1$, i.e. when $W_{u}=W_{d}$)
  1454. \begin{equation}
  1455. \Delta Q_{w}=\Delta Q_{r}f_{w,\,photo}=\Delta Q_{r}\frac{W_{u}}{W_{d}}\label{eq:WaterStressBiomassProduction}
  1456. \end{equation}
  1457. $f_{w,photo}$ also affect the senescence of the leaves.
  1458. \subsubsection{Leaf expansion}
  1459. Soil water stress of leaf expansion is determined by the deficit of
  1460. soil water.
  1461. \begin{equation}
  1462. f_{W,\,expan}=h_{w,\,expan}(\frac{W_{u}}{W_{d}})\label{eq:WaterStressLeafExpansion}
  1463. \end{equation}
  1464. where $W_{u}$ is the crop water uptake (\autoref{eq:WaterUpdate}),
  1465. $W_{d}$ is the crop water demand (\autoref{eq:soilWaterDemand}).
  1466. $h_{w,\,expan}$ is a function of soil water content and stress, and
  1467. is defined by parameters \texttt{x\_sw\_demand\_ratio} and \texttt{y\_swdef\_leaf}
  1468. in the wheat.xml, which is linearly interpolated by APSIM (\autoref{fig:wdWaterStress4LeafExpansion}).
  1469. <<wdWaterStress4LeafExpansion,fig.cap='Relationship between the soil water stress factor affecting expansion ($f_{W,\\, expan}$) and supply:demand ratio ($\\frac{W_{e}}{W_{d}}$).'>>=
  1470. p <- wdVisXY(wheat_xml,
  1471. "x_sw_demand_ratio", "y_swdef_leaf",
  1472. xlab = "Soil water supply:demand ratio",
  1473. ylab = "Soil water stress of expansion")
  1474. print(p)
  1475. @
  1476. \subsection{KL factor}
  1477. APSIM 7.5 introduces a modifying factor on KL (rate of maximum daily
  1478. water uptake per day) where there is an excess of chloride concentration
  1479. (Cl), exchangeable sodium percentage (ESP), or electrical conductivity
  1480. (EC) properties in the soil \citep{hochman2007simulating}. The KL
  1481. modifier is optional and triggered by setting the ModifyKL parameter
  1482. to \textquoteleft yes\textquoteright .
  1483. When the KL modifier is activated, KL values are modified for each
  1484. layer, by factors (concerning Cl, ESP, EC; \autoref{fig:wdKLFactoring})
  1485. applied to default KL values. The modifiers are calculated using one
  1486. of the limiting factors in order of preference (Cl, ESP, EC), i.e.
  1487. KL is modified only if there are no soil parameters for Cl. The parameters
  1488. in the wheat.xml that control this mechanism are ClA, CLB, ESPA, ESPB,
  1489. ECA, ECB (slope and intercept of linear relationship for Cl, ESP and
  1490. EC).
  1491. <<wdKLFactoring,fig.height=6,fig.cap='The KL factor in response to chloride concentration (Cl mg kg$^{-1}$, Exchangeable sodium percentage (ESP, \\%) and soil electrical conductivity (EC, dS m$^{-1}$.'>>=
  1492. p <- wdKLFactoring(wheat_xml)
  1493. print(p)
  1494. @
  1495. \section{Nitrogen}
  1496. The nitrogen stress phase begins before 30\% floral initiation to
  1497. finish at the 'harvest ripe' phase (\autoref{fig:PhenologWheatModule}),
  1498. which are defined by \texttt{n\_stress} in wheat.xml.
  1499. \subsection{Nitrogen supply}
  1500. Ammonium ($\text{NH}_{4}^{+}$) is not taken up in wheat as wheat.xml
  1501. parameter knh4 (constant for NH\textsubscript{4} extraction) is equal
  1502. to 0.
  1503. The model uses a simplified formulation for nitrate $\text{NO}_{3}^{-}$
  1504. uptake somewhat similar in structure to that employed in water uptake.
  1505. During the nitrogen stress phase (\autoref{fig:PhenologWheatModule}),
  1506. nitrogen supply for soil layer $i$ ($N_{s}(i)$, g m\textsuperscript{-2})
  1507. is calculated as follows:
  1508. \begin{equation}
  1509. N_{s}(i)=K_{NO3}N(i)[N(i)\frac{1000}{\text{BD}(i)D_{s}(i)}]\frac{\text{\text{ESW}}_{a}(i)}{\text{ESW}_{p}(i)}
  1510. \end{equation}
  1511. where $K_{NO3}$ is a constant of extractable soil nitrogen, which
  1512. is defined by \texttt{kno3} with default value 0.02; $N(i)$ is the
  1513. $\text{NO}_{3}^{-}$concentration in soil layer $i$ (g m\textsuperscript{-2});
  1514. $\text{BD}(i)$ is the bulk density of soil layer $i$ (g cm\textsuperscript{-3});
  1515. $D_{s}(i)$ is the depth of soil layer $i$ (cm); $\text{ESW}_{a}(i)$
  1516. is the actual extractable soil water in soil layer $i$ (\autoref{eq:SoilWaterESW});
  1517. $\text{ESW}{}_{p}(i)$ is the potential extractable soil water in
  1518. soil layer $i$ (\autoref{eq:SoilWaterESW}).
  1519. During non-nitrogen stress phase (\autoref{fig:PhenologWheatModule}),
  1520. wheat could access to all available nitrogen.
  1521. \begin{equation}
  1522. N_{s}(i)=N(i)\frac{1000}{\text{BD}(i)D_{s}(i)}\label{eq:NitrogenSupply}
  1523. \end{equation}
  1524. The values of $N_{s}(i)$ for each layer of root presented are summed
  1525. to get a total potential nitrogen uptake (or crop N supply, $N_{s}$)
  1526. and then each layer $N_{s}(i)$ is scaled by maximum total nitrogen
  1527. uptake ($N_{s,\,max}$), which is defined by \texttt{total\_n\_uptake\_max}
  1528. with default value 0.6 g m\textsuperscript{-2}.
  1529. \begin{equation}
  1530. N_{s}'(i)=N_{s}(i)\frac{N_{s,\,max}}{N_{s}}
  1531. \end{equation}
  1532. where $N_{s}'(i)$ is the actual nitrogen uptake in the layer $i$.
  1533. \subsection{Nitrogen demand}
  1534. Total wheat nitrogen demand is the sum of the N demand in all parts
  1535. (i.e. \texttt{Leaf}, \texttt{Stem}, and \texttt{Pod}). Wheat has a
  1536. defined minimum ($C_{N,\,min}$), critical ($C_{N,\,crit}$) and maximum
  1537. ($C_{N,\,max}$) nitrogen concentration for all plant parts (\autoref{fig:wdNitrogenConcentration}).
  1538. These concentration limits change with phenological stages (\autoref{fig:wdNitrogenConcentration}).
  1539. And they are defined by parameters \texttt{x\_stage\_code}, \texttt{y\_n\_conc\_min\_leaf},
  1540. \texttt{y\_n\_conc\_crit\_leaf}, \texttt{y\_n\_conc\_max\_leaf}, \texttt{y\_n\_conc\_min\_stem},
  1541. \texttt{y\_n\_conc\_crit\_stem}, \texttt{y\_n\_conc\_max\_stem, y\_n\_conc\_min\_pod,
  1542. y\_n\_conc\_crit\_pod, y\_n\_conc\_max\_pod} in wheat.xml and linearly
  1543. interpolated by APSIM .
  1544. Physiologically, minimum nitrogen concentration ($C_{N,\,min}$) corresponds
  1545. to the structural N required for the plant structure, and which cannot
  1546. be re-translocated. Critical nitrogen concentration ($C_{N,\,crit}$)
  1547. corresponds to the minimum concentration of N that plant parts will
  1548. attempt to maintain (it drives the \textquoteleft N demand\textquoteright{}
  1549. of the part), and maximum nitrogen concentration ($C_{N,\,max}$)
  1550. reflects to the capacity of the part to accumulate the extra available
  1551. N (i.e. fulfilling more than its \textquoteleft demand\textquoteright )
  1552. up to a this maximum threshold N.
  1553. <<wdNitrogenConcentration,fig.height=6,fig.cap='Relationship between maximum, critical, minimum nitrogen concentration and growth stages for the different plant parts (Leaf, Stem and Pod). Parameters are defined by defined by parameters x\\_stage\\_code, y\\_n\\_conc\\_min\\_leaf, y\\_n\\_critonc\\_crit\\_leaf, y\\_n\\_conc\\_max\\_leaf, y\\_n\\_conc\\_min\\_stem, y\\_n\\_critonc\\_crit\\_stem, y\\_n\\_critonc\\_max\\_stem in wheat.xml.'>>=
  1554. p <- wdNitrogenConcentration()
  1555. print(p$pod, position = c(0, 0, 1, 0.35), more = TRUE)
  1556. print(p$stem, position = c(0, 0.31, 1, 0.68), more = TRUE)
  1557. print(p$leaf, position = c(0, 0.65, 1, 1))
  1558. @
  1559. \subsubsection{Nitrogen demand of \texttt{Grain}}
  1560. \texttt{Grain} nitrogen demand starts at anthesis and is calculated
  1561. from grain number, thermal time and a potential grain nitrogen filling
  1562. rate (g grain\textsuperscript{-1} $^{\circ}$Cd\textsuperscript{-1}).
  1563. \begin{equation}
  1564. N_{D,\;grain}=N_{g}\,R_{N,\,poten,}\,f_{N,\;grain}\,h_{grain}(T)\label{eq:NitrogenDemand}
  1565. \end{equation}
  1566. where $N_{g}$ is the grain number, $R_{N,\,poten,}$ is the potential
  1567. nitrogen filling rate, which is defined by parameter \texttt{potential\_grain\_n\_filling\_rate}
  1568. in wheat.xml with default value 0.000055 g grain\textsuperscript{-1}
  1569. d\textsuperscript{-1}. $f_{N,\;grain}$ is the nitrogen factor of
  1570. grain filling (\autoref{eq:NStressFilling}). $h_{grain}(T)$ is a
  1571. function of daily mean temperature ($T$) to influence of grain filling
  1572. (\autoref{fig:wdNitrogenTem}).
  1573. <<wdNitrogenTem,fig.cap='Relationship between nitrogen demand of Grain and daily mean temperature.'>>=
  1574. p <- wdVisXY(wheat_xml,
  1575. "x_temp_grain_n_fill", "y_rel_grain_n_fill",
  1576. xlab = expression(paste("Daily mean temperature", ~"("*degree*"C)")),
  1577. ylab = 'Temperature factor to nitrogen demand of grain')
  1578. print(p)
  1579. @
  1580. \subsubsection{Nitrogen demand of other parts}
  1581. Demand of nitrogen in each part (except Grain) attempts to maintain
  1582. nitrogen at the critical (non-stressed) level. Nitrogen demand on
  1583. any day is the sum of the demands from the pre-existing biomass of
  1584. each part required to reach critical nitrogen content, plus the nitrogen
  1585. required to maintain critical nitrogen concentrations in that day's
  1586. produced biomass. For each plant part (\texttt{Leaf}, \texttt{Stem},
  1587. and \texttt{Pod}) the nitrogen demand is given by:
  1588. \begin{equation}
  1589. N_{D,\;crit}=\frac{\Delta Q_{part}C_{N,\,crit}}{f_{w,\,photo}}+f_{n}(C_{N,\,crit}-C_{N,\,part})\qquad if\:C_{N,\,crit}>C_{N,\,part}\;\&\;Q_{part}>0
  1590. \end{equation}
  1591. \begin{equation}
  1592. N_{D,\;max}=\frac{\Delta Q_{part}C_{N,\,max}}{f_{w,\,photo}}+f_{n}(C_{N,\,max}-C_{N,\,part})\qquad if\:C_{N,\,max}>C_{N,\,part}\;\&\;Q_{part}>0
  1593. \end{equation}
  1594. where $\Delta Q_{part}$ is the growth dry weight of parts, $Q_{part}$
  1595. is the green (i.e. not senesced) dry weight of parts, $f_{w,\,photo}$
  1596. is soil water stress of biomass accumulation (\autoref{eq:swstressphoto});
  1597. $C_{N,\,part}$ is the nitrogen concentration of parts; $f_{n}$ is
  1598. defined by parameter \texttt{n\_deficit\_uptake\_fraction} in wheat.xml
  1599. with default value 0.0001. $C_{N,\,crit}$ and $C_{N,\,max}$ are
  1600. the N concentration critic and maximal of the parts, respectively
  1601. (\autoref{fig:wdNitrogenConcentration}).\textbf{ }$N_{D,\;crit}$
  1602. and $N_{D,\;max}$ equal to 0, if $Q_{part}=0$.
  1603. \subsection{\label{subsec:NitrogenPartitioningAndRetranslocation}Nitrogen uptake,
  1604. partitioning and re-translocation}
  1605. \subsubsection{Nitrogen concentrations in wheat parts}
  1606. The N concentration in Leaf is calculated as follows:
  1607. \begin{equation}
  1608. C_{N,\,leaf}=N_{leaf}/Q_{leaf}
  1609. \end{equation}
  1610. \subsubsection{Nitrogen uptake}
  1611. Daily total nitrogen uptake ($N_{u}$) is the lesser of N demand ($N_{d}$,
  1612. \autoref{eq:NitrogenDemand}) and N supply $N_{s}$, \autoref{eq:NitrogenSupply}).
  1613. \begin{equation}
  1614. N_{u}=\text{min}(N_{d},\;N_{s})
  1615. \end{equation}
  1616. \subsubsection{Nitrogen translocation}
  1617. Daily total nitrogen uptake is distributed to the plant parts in proportion
  1618. to their individual demands.
  1619. \subsubsection{Nitrogen re-translocation }
  1620. If there is insufficient nitrogen supplied from senescing material
  1621. and soil nitrogen uptake, Grain nitrogen demand is met by re-translocating
  1622. nitrogen from other plant parts. Nitrogen is available for re-translocation
  1623. from un-senesced leaves and stems until they reach their defined minimum
  1624. nitrogen concentration. No N re-translocation is attributed to other
  1625. parts than \texttt{Grain}.
  1626. \subsection{Nitrogen stresses}
  1627. \subsubsection{Phenology}
  1628. Nitrogen stress on phenology (via $f_{N,\,pheno}$ in \autoref{eq:CumThermalTime})
  1629. is determined by the difference between organ nitrogen concentration
  1630. and organ minimum and critical nitrogen concentration.
  1631. \begin{equation}
  1632. f_{N,\,pheno}=h_{N,\,pheno}\sum_{stem,\,leaf}\frac{C_{N}-C_{N,\,min}}{C_{N,\,crit}\times f_{c,\,N}-C_{N,\,min}}\label{eq:NitrogenStress}
  1633. \end{equation}
  1634. where $C_{N}$ is the nitrogen concentration of \texttt{Stem} or \texttt{Leaf}
  1635. parts; $h_{N,\,pheno}$ is multiple for nitrogen deficit effect on
  1636. phenology which is specified by \texttt{N\_fact\_pheno} in the wheat.xml
  1637. and default value is 100; $C_{N,\,crit}$ and $C_{N,\,min}$ are the
  1638. N concentration critic and minimal of the parts, respectively (\autoref{fig:wdNitrogenConcentration});
  1639. and $f_{c,\,N}$ is a factor with a value of 1 (i.e. no impact) for
  1640. Stem, and is depending on CO\textsubscript{2} for \texttt{Leaf} (\autoref{fig:wbCO2CritLeaf}).
  1641. The nitrogen stress on phenology is used in the calculation of the
  1642. \textquoteleft adjusted\textquoteright{} thermal time (\autoref{eq:CumThermalTime}).
  1643. However, In the current version of APSIM-Wheat module, the default
  1644. parameters are applied for no nitrogen water stress for phenology.
  1645. \subsubsection{Biomass accumulation}
  1646. Nitrogen stress on biomass accumulation (via $f_{N,\,photo}$ in \autoref{eq:StressFactor4Photosynthesis})
  1647. is determined by the difference between leaf nitrogen concentration
  1648. and leaf minimum and critical nitrogen concentration.
  1649. \begin{equation}
  1650. f_{N,\,photo}=h_{N,\,photo}\sum_{leaf}\frac{C_{N}-C_{N,\,min}}{C_{N,\,crit}\times f_{c,\,N}-C_{N,\,min}}\label{eq:NStressPhoto}
  1651. \end{equation}
  1652. where $C_{N}$ is the nitrogen concentration of \texttt{Leaf} parts;
  1653. $h_{N,\,photo}$ is multiplier for nitrogen deficit effect on photosynthesis
  1654. which is specified by \texttt{N\_fact\_photo} in the wheat.xml and
  1655. default value is 1.5; $C_{N,\,crit}$ and $C_{N,\,min}$ are the N
  1656. concentration critic and minimal of the parts, respectively (\autoref{fig:wdNitrogenConcentration});
  1657. and $f_{c,\,N}$ is a factor with a value of 1 (i.e. no impact) for
  1658. Stem, and is depending on CO\textsubscript{2} for \texttt{Leaf} (\autoref{fig:wbCO2CritLeaf}).
  1659. The nitrogen stress on biomass accumulation affects the radiation-limited
  1660. biomass accumulation ($\Delta Q_{r}$, \autoref{eq:actualBiomassProduction}).
  1661. \subsubsection{Leaf appearance and expansion (i.e. leaf number and LAI)}
  1662. Nitrogen stress on leaf appearance and expansion (via $f_{N,\,expan}$
  1663. in \autoref{eq:LeafExpansionStress}) is determined by the difference
  1664. between leaf nitrogen concentration and leaf minimum and critical
  1665. nitrogen concentration.
  1666. \begin{equation}
  1667. f_{N,\,expan}=h_{N,\,expan}\sum_{leaf}\frac{C_{N}-C_{N,\,min}}{C_{N,\,crit}\times f_{c,\,N}-C_{N,\,min}}\label{eq:NStressLeafExpansion}
  1668. \end{equation}
  1669. where $C_{N}$ is the nitrogen concentration of \texttt{Leaf} parts;
  1670. $h_{N,\,expan}$ is multiplier for nitrogen deficit effect on expansion
  1671. which is specified by \texttt{N\_fact\_expansion} in the wheat.xml
  1672. (default value 1); $C_{N,\,crit}$ and $C_{N,\,min}$ are the N concentration
  1673. critic and minimal of the parts, respectively (\autoref{fig:wdNitrogenConcentration});
  1674. and $f_{c,\,N}$ is a factor with a value of 1 (i.e. no impact) for
  1675. Stem, and is depending on CO\textsubscript{2} for \texttt{Leaf} (\autoref{fig:wbCO2CritLeaf}).
  1676. The nitrogen stress on leaf appearance and expansion affects the potential
  1677. leaf number ($N_{d,\,pot}$; \autoref{eq:PotentialNodeNumberDaily})
  1678. and the stressed leaf area index ($\Delta\text{LAI}_{d,\,s}$, \autoref{eq:StressLeafArea}).
  1679. \subsubsection{Grain filling (biomass and nitrogen demand of grain)}
  1680. Nitrogen stress on grain filling affects the biomass demand of \texttt{Grain}
  1681. (via $f_{N,\,grain}$ in \autoref{eq:MealDemand}) and the N demand
  1682. of \texttt{Grain} (\autoref{eq:NitrogenDemand}).
  1683. The nitrogen factor $f_{N,\,grain}$ (that impacts N demand of grain)
  1684. is determined by the difference between organ nitrogen concentration
  1685. and organ minimum and critical nitrogen concentration as follows:.
  1686. \begin{equation}
  1687. f_{N,\,grain}=\frac{h_{N,\ poten}}{h_{N,\ min}}h_{N,\,grain}\sum_{stem,\,leaf}\frac{C_{N}-C_{N,\,min}}{C_{N,\,crit}\times f_{c,\,N}-C_{N,\,min}}\qquad(0\leq f_{N,\,fill}\leq1)\label{eq:NStressFilling}
  1688. \end{equation}
  1689. where $h_{N,\ poten}$ is the potential rate of grain filling which
  1690. is specified by \texttt{potential\_grain\_n\_filling\_rate} in wheat.xml
  1691. and has a default value of 0.000055 g grain\textsuperscript{-1} d\textsuperscript{-1};
  1692. $h_{N,\ min}$ is the minimum rate of grain filling which is specified
  1693. by \texttt{minimum\_grain\_n\_filling\_rate} in wheat.xml and has
  1694. a default value of 0.000015 g grain\textsuperscript{-1} d\textsuperscript{-1};
  1695. $h_{N,\,grain}$ is a multiplier for nitrogen deficit effect on grain,
  1696. which is specified by \texttt{n\_fact\_grain} in wheat.xml and has
  1697. a default value of 1; $C_{N}$ is the nitrogen concentration of \texttt{Stem}
  1698. or \texttt{Leaf} parts; $C_{N,\,crit}$ and $C_{N,\,min}$ are critical
  1699. and minimum nitrogen concentration, respectively, for \texttt{Stem}
  1700. and \texttt{Leaf} parts. $C_{N,\,crit}$ and $C_{N,\,min}$ are functions
  1701. of growth stage and nitrogen concentration which is defined by parameters
  1702. \texttt{x\_stage\_code}, \texttt{y\_n\_conc\_min\_leaf}, \texttt{y\_n\_conc\_crit\_leaf},
  1703. \texttt{y\_n\_conc\_min\_stem}, \texttt{y\_n\_conc\_crit\_stem} in
  1704. wheat.xml and linearly interpolated by APSIM (\autoref{fig:wdNitrogenConcentration});
  1705. and $f_{c,\,N}$ is a factor with a value of 1 (i.e. no impact) for
  1706. Stem, and is depending on CO\textsubscript{2} for \texttt{Leaf} (\autoref{fig:wbCO2CritLeaf}).
  1707. \section{Phosphorus\label{subsec:Phosphorus-stress}}
  1708. In the current version of APSIM-Wheat module, no phosphorus stress
  1709. $f_{P,\,pheno}=1$ is applied in the soil system through parameter
  1710. labile\_p in the source codes.
  1711. \section{Temperature }
  1712. As mentioned in previous sections, the temperature affects:
  1713. \begin{itemize}
  1714. \item crop phenology via the thermal time ($\Delta TT$; \autoref{eq:thermaltime})
  1715. and crop vernalisation ($f_{V}$; \autoref{eq:VernalisationFactor}),
  1716. and via crop emergence (\autoref{eq:Emergence}),
  1717. \item root depth growth ($f_{rt}$; \autoref{eq:RootGrowthTemperature};
  1718. \autoref{fig:wdTempRootFactor}),
  1719. \item radiation-limited biomass accumulation ($\Delta Q_{r}$; \autoref{eq:BiomassProduction})
  1720. via a stress factor ($f_{s}$), which depends on a temperature factor
  1721. ($f_{T,photo}$; \autoref{eq:TemStressPhoto}),
  1722. \item CO\textsubscript{2} effect on biomass accumulation via a temperature
  1723. effect on the CO\textsubscript{2} compensation point $(C_{i}$; \autoref{eq:CO2Factor4Photosynthesis};
  1724. \autoref{fig:wdCardonDioxideFactor}),
  1725. \item LAI senescence under minimum and maximum temperature ($\Delta LAI_{sen,\,frost}$,
  1726. $\Delta LAI_{sen,\,heat}$; \autoref{eq:SensFrost} and \autoref{eq:SensHeat}),
  1727. \item biomass demand of \texttt{Grain} ($D_{g}$) and the rate of grain
  1728. filling (\autoref{eq:MealDemand}; \autoref{fig:PhenologWheatModule}),
  1729. \item N demand of \texttt{Grain} (\autoref{eq:NitrogenDemand}; \autoref{fig:wdNitrogenTem}),
  1730. \item VPD calculation (\autoref{eq:VPD}).
  1731. \end{itemize}
  1732. \section{Light }
  1733. Light photoperiod is calculated as detailed in
  1734. \autoref{sub:Photoperiod}. Photoperiod affects wheat phenology.
  1735. Light intensity and photoperiod also have an effect on diffuse light
  1736. fraction (\autoref{par:Diffuse-factor}), so that it could impact
  1737. the diffuse factor ($f_{d}$; \autoref{eq:BiomassProduction}; \autoref{sub:Radiation-limited-biomass})
  1738. and reduce the radiation-limited biomass accumulation ($\Delta Q_{r}$;
  1739. \autoref{sub:Radiation-limited-biomass}). However, in the current
  1740. APSIM-Wheat, the diffuse factor equals to 1 (i.e. no impact of diffuse
  1741. light on biomass production).
  1742. Light intensity affects
  1743. \begin{itemize}
  1744. \item radiation-limited biomass accumulation ($\Delta Q_{r}$; \autoref{sub:Radiation-limited-biomass})
  1745. via the radiation interception ($I$; \autoref{eq:RadiationInterception}),
  1746. which depends on the incoming radiation ($I_{0}$) and on a light-interception
  1747. factor ($f_{h}$ ) based on the canopy width. However, this canopy
  1748. factor has no impact in the current version of APSIM-Wheat ($f_{h}$
  1749. = 1),
  1750. \item LAI senescence under low light condition ($\Delta LAI_{sen,\,light}$;
  1751. \autoref{eq:SensLight}).
  1752. \end{itemize}
  1753. \section{CO\protect\textsubscript{2}}
  1754. As mentioned in previous sections, CO\textsubscript{2} concentration
  1755. affects:
  1756. \begin{itemize}
  1757. \item radiation-limited biomass accumulation ($\Delta Q_{r}$; \autoref{sub:Radiation-limited-biomass})
  1758. via a CO\textsubscript{2} factor affecting the RUE ($f_{c}$; \autoref{eq:CO2Factor4Photosynthesis}),
  1759. \item transpiration efficiency ($TE$, \autoref{eq:TranspirationEfficiency})
  1760. via another CO\textsubscript{2} factor ($f_{c,\,TE}$; \autoref{fig:wdCO2TE}),
  1761. \item N critic concentration of the leaves (\autoref{eq:NitrogenStress},
  1762. \autoref{eq:NStressPhoto}, \autoref{eq:NStressLeafExpansion}, \autoref{eq:NStressFilling}
  1763. and \autoref{fig:wbCO2CritLeaf}).
  1764. \end{itemize}
  1765. \section{Vapour pressure deficit (VPD) }
  1766. The vapour pressure deficit (VPD) is calculated as presented in \autoref{eq:VPD}.
  1767. VPD affects the transpiration efficiency (\autoref{eq:TranspirationEfficiency})
  1768. and thus the crop water demand (\autoref{eq:soilWaterDemand}).
  1769. \bibliographystyle{elsart-harv}
  1770. \bibliography{wd}
  1771. \newpage{}
  1772. \setcounter{figure}{0}
  1773. \renewcommand{\thefigure}{A.\arabic{figure}}
  1774. \setcounter{table}{0}
  1775. \renewcommand{\thetable}{A.\arabic{table}}
  1776. \begin{landscape}
  1777. \appendix
  1778. \section{Parameter list of wheat module}
  1779. \begin{center}
  1780. \begin{longtable}[c]{>{\raggedright}p{0.3\columnwidth}>{\raggedright}p{0.1\columnwidth}>{\raggedright}p{0.1\columnwidth}>{\raggedright}p{0.45\columnwidth}}
  1781. \hline
  1782. Variables & Units & Default Value & Description\tabularnewline
  1783. \hline
  1784. \endhead
  1785. \multicolumn{4}{l}{\textbf{Phenology}}\tabularnewline
  1786. \hypertarget{tt_<phase_name>}{tt\_<phase\_name>}, (\hypertarget{tt_emergence}{tt\_emergence}, \hypertarget{tt_end_of_juvenile}{tt\_end\_of\_juvenile},\hypertarget{tt_floral_initiation}{tt\_floral\_initiation}, \hypertarget{tt_flowering}{tt\_flowering}, \hypertarget{tt_start_grain_fill}{tt\_start\_grain\_fill}, \hypertarget{tt_end_grain_fill}{tt\_end\_grain\_fill}, \hypertarget{tt_maturity}{tt\_maturity}, \hypertarget{tt_end_crop}{tt\_end\_crop}, \hypertarget{tt_harvest_ripe}{tt\_harvest\_ripe}) & $^{\circ}\text{C}$ & \autoref{fig:PhenologWheatModule} & The thermal time target for all phases\tabularnewline
  1787. \hypertarget{xtemp}{x\_temp}, \hypertarget{ytt}{y\_tt} & $^{\circ}\text{C}$, $^{\circ}\text{C}$d & \autoref{fig:wdThermalTime} & The function between cardinal temperature and effective thermal time.\tabularnewline
  1788. \hypertarget{pesw_germ}{pesw\_germ} & mm mm$^{\text{-1}}$ & 0 & Plant extractable soil water in seedling layer inadequate for germination\tabularnewline
  1789. \hypertarget{x_node_no_leaf}{x\_node\_no\_leaf}, \hypertarget{y_leaves_per_node}{y\_leaves\_per\_node} & node rank in main stem & \autoref{fig:wdTillerNumberByNode} & The function to define the potential new tiller number \tabularnewline
  1790. \hypertarget{shoot_lag}{shoot\_lag} & $^{\circ}\text{C}$d & 40 & Time lag before linear coleoptile growth starts\tabularnewline
  1791. \hypertarget{shoot_rate}{shoot\_rate} & $^{\circ}\text{C}$d mm$^{\text{-1}}$ & 1.5 & Growing deg day increase with depth for coleoptile\tabularnewline
  1792. \hypertarget{fasw_emerg}{fasw\_emerg} & {[}{]} & 0.0 1.0 & Fraction of available soil water\tabularnewline
  1793. \hypertarget{rel_emerg_rate}{rel\_emerg\_rate} & {[}{]} & 1.0 1.0 & Stress factor for thermal time calculation between germination and
  1794. emergence\tabularnewline
  1795. \hypertarget{tt_emergence}{tt\_emergence} & $^{\circ}\text{C}$d & 1 & The thermal time for seed emergence\tabularnewline
  1796. \hypertarget{tt_end_of_juvenile}{tt\_end\_of\_juvenile} & $^{\circ}\text{C}$d & 400 & The potential period from end of juvenile stage to terminal spikelet
  1797. stage%
  1798. \begin{comment}
  1799. May be from emergence
  1800. \end{comment}
  1801. \tabularnewline
  1802. \hypertarget{twilight}{twilight} & $^{\circ}$ & -6.0 & Twilight is defined as the interval between sunrise or sunset and
  1803. the time when the true\tabularnewline
  1804. \hypertarget{photop_sens}{photop\_sens} & {[}{]} & 3 & Sensitivities to photoperiod\tabularnewline
  1805. \hypertarget{vern_sens}{vern\_sens} & {[}{]} & 1.5 & Sensitivities to vernalisation\tabularnewline
  1806. \hypertarget{N_fact_pheno}{N\_fact\_pheno} & {[}{]} & 100 & Multiplier for N deficit effect on phenology\tabularnewline
  1807. & & & \tabularnewline
  1808. \textbf{Biomass production} & & & \tabularnewline
  1809. \hypertarget{x_stage_rue}{x\_stage\_rue} & {[}{]} & 1 2 3 4 5 6 7 8 9 10 11 & Numeric code for phenological stages\tabularnewline
  1810. \hypertarget{y_rue}{y\_rue} & g MJ$^{\text{-1}}$ & 0 0 1.24 1.24 1.24 1.24 1.24 1.24 0.00 0.00 0 & The radiation use efficiency for each phenological stage\tabularnewline
  1811. \hypertarget{sen_rate_water}{sen\_rate\_water} & {[}{]} & 0.10 & slope in linear equation relating soil water stress during photosynthesis
  1812. to leaf senescence rate\tabularnewline
  1813. \hypertarget{sen_light_slope}{sen\_light\_slope} & {[}{]} & 0.002 & sensitivity of leaf area senescence to shading\tabularnewline
  1814. \hypertarget{lai_sen_light}{lai\_sen\_light} & m$^{\text{2}}$ m$^{\text{-2}}$ & 7.0 & induced senescence occurs by shading\tabularnewline
  1815. \hypertarget{x_sw_avail_ratio}{x\_sw\_avail\_ratio}, \hypertarget{y_swdef_pheno}{y\_swdef\_pheno} & {[}{]}, {[}{]} & \autoref{fig:wdSoilWaterStressPhenology} & The function between available soil water ratio and soil water stress
  1816. of phenology.\tabularnewline
  1817. \hypertarget{x_sw_avail_ratio_flowering}{x\_sw\_avail\_ratio\_flowering},
  1818. \hypertarget{y_swdef_pheno_flowering}{y\_swdef\_pheno\_flowering} & {[}{]}, {[}{]} & \autoref{fig:wdSoilWaterStressPhenology} & The function between available soil water ratio and soil water stress
  1819. of phenology for flowering phase.\tabularnewline
  1820. \hypertarget{x_sw_avail_ratio_start_grain_fill}{x\_sw\_avail\_ratio\_start\_grain\_fill},
  1821. \hypertarget{y_swdef_pheno_start_grain_fill}{y\_swdef\_pheno\_start\_grain\_fill} & {[}{]}, {[}{]} & \autoref{fig:wdSoilWaterStressPhenology} & The function between available soil water ratio and soil water stress
  1822. of phenology for grain filling phase.\tabularnewline
  1823. \hypertarget{x_stage_code}{x\_stage\_code}, \hypertarget{y_n_conc_min_leaf}{y\_n\_conc\_min\_leaf},
  1824. \hypertarget{y_n_conc_crit_leaf}{y\_n\_conc\_crit\_leaf}
  1825. \hypertarget{y_n_conc_min_stem}{y\_n\_conc\_min\_stem}, \hypertarget{y_n_conc_crit_stem}{y\_n\_conc\_crit\_stem} & & & The function between growth stage and minimum can critical nitrogen
  1826. concentration.\tabularnewline
  1827. \hypertarget{x_row_spacing}{x\_row\_spacing} & mm & 200 350 1000 & \tabularnewline
  1828. \hypertarget{y_extinct_coef}{y\_extinct\_coef} & {[}{]} & 0.50 0.50 0.50 & \tabularnewline
  1829. & & & \tabularnewline
  1830. \textbf{Leaf growth} & & & \tabularnewline
  1831. \hypertarget{leaf_no_at_emerg}{leaf\_no\_at\_emerg} & {[}{]} & 2 & Leaf number at emergence\tabularnewline
  1832. \hypertarget{initial_tpla}{initial\_tpla} & mm$^{\text{2}}$ plant$^{\text{-1}}$ & 200 & Initial leaf area per plant\tabularnewline
  1833. \hypertarget{node_no_correction}{node\_no\_correction} & {[}{]} & 2 & The node number correction\tabularnewline
  1834. \hypertarget{min_tpla}{min\_tpla} & mm$^{\text{2}}$ plant$^{\text{-1}}$ & 5.0 & Lower limit of total leaf area per plant\tabularnewline
  1835. \hypertarget{x_lai}{x\_lai}, \hypertarget{y_sla_max}{y\_sla\_max} & mm$^{\text{2}}$ mm$^{-2}$, mm$^{\text{2}}$ g$^{\text{-1}}$ & \autoref{fig:wdSLA} & The function between leaf area index and specific leaf area.\tabularnewline
  1836. \hypertarget{x_lai_ratio}{x\_lai\_ratio}, \hypertarget{y_leaf_no_frac}{y\_leaf\_no\_frac} & {[}{]}, {[}{]} & \autoref{fig:wdLAINodeNumber} & The function between fraction of leaf area index and fraction of node
  1837. number.\tabularnewline
  1838. \hypertarget{fr_lf_sen_rate}{fr\_lf\_sen\_rate} & {[}{]} & 0.035 & Fraction of total leaf number senescing per main stem node\tabularnewline
  1839. \hypertarget{node_sen_rate}{node\_sen\_rate} & $^{\circ}\text{C}$d node$^{\text{-1}}$ & 60.0 & Rate of node senescence on main stem\tabularnewline
  1840. \hypertarget{x_node_no}{x\_node\_no}, \hypertarget{y_leaf_size}{y\_leaf\_size} & node rank in main stem, mm$^{\text{2}}$ & & The leaf size as a function of leaf number\tabularnewline
  1841. \hypertarget{leaf_no_pot_option}{leaf\_no\_pot\_option} & {[}{]} & 2 & The option to calculate the potential leaf number. The option 2 is
  1842. for wheat.\tabularnewline
  1843. \hypertarget{x_sw_demand_ratio}{x\_sw\_demand\_ratio}, \hypertarget{y_swdef_leaf}{y\_swdef\_leaf} & {[}{]}, {[}{]} & & The function between supply of soil water and water stress for leaf
  1844. expansion.\tabularnewline
  1845. \hypertarget{N_fact_expansion}{N\_fact\_expansion} & {[}{]}, & 1 & Multiplier for N deficit effect on leaf expansion\tabularnewline
  1846. & & & \tabularnewline
  1847. \hline
  1848. \end{longtable}
  1849. \par\end{center}
  1850. \end{landscape}
  1851. \end{document}