06-head-developmeng.Rmd 4.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157
  1. # Head development
  2. ## Grain number
  3. The number of grains per plant ($N_{g}$) is determined by the stem
  4. weight at anthesis.
  5. \begin{equation}
  6. N_{g}=R_{g}W_{s}
  7. \end{equation}
  8. where $W_{s}$ is the stem dry weight at anthesis, $R_{g}$ is the
  9. grain number per gram stem which is specified by `grain_per_gram_stem`
  10. in wheat.xml, with default value at 25 grain g\textsuperscript{-1}.
  11. ## `Grain` (`Meal`) demand\label{subsec:Grain-(meal)-demand}
  12. The `Grain` demand (or `Meal` demand, $D_{g}$) is calculated
  13. in the growth phase `postflowering` (from flowering to end
  14. of grain filling Fig. \@ref(fig:PhenologWheatModule)). $D_{g}$ equals
  15. to 0 before flowering.
  16. \begin{equation}
  17. D_{g}=N_{g}R_{p}h_{g}(T_{mean})f_{N,\,grain} (\#eq:MealDemand)
  18. \end{equation}
  19. where $N_{g}$ is the grain number, $R_{p}$ is the potential rate
  20. of grain filling (0.0010 grain\textsuperscript{-1} d\textsuperscript{-1}
  21. from flowering to start of grain filling (Fig. \@ref(fig:PhenologWheatModule));
  22. 0.0020 grain\textsuperscript{-1} d\textsuperscript{-1} during grain
  23. filling (Fig. \@ref(fig:PhenologWheatModule))), $h_{g}(T_{mean})$
  24. is a function of daily mean temperature which affects the rate of
  25. grain filling (0-1) and is defined by parameters `x_temp_grainfill`
  26. and `y_rel_grainfill` in wheat.xml and linearly interpolated
  27. by APSIM (Fig. \@ref(fig:wdTempGrainFill)).
  28. $f_{N,\,grain}$ is a nitrogen factor to grain filling.
  29. \begin{equation}
  30. f_{N,\,grain}=\frac{h_{N,\ poten}}{h_{N,\ min}}h_{N,\,grain}\sum_{stem,\,leaf}\frac{C_{N}-C_{N,\,min}}{C_{N,\,crit}\times f_{c,\,N}-C_{N,\,min}}\qquad(0\leq f_{N,\,fill}\leq1)
  31. \end{equation}
  32. where $h_{N,\ poten}$ is the potential rate of grain filling which
  33. is specified by `potential_grain_n_filling_rate` in wheat.xml
  34. and has a default value of 0.000055 g grain\textsuperscript{-1} d\textsuperscript{-1};
  35. $h_{N,\ min}$ is the minimum rate of grain filling which is specified
  36. by `minimum_grain_n_filling_rate` in wheat.xml and has
  37. a default value of 0.000015 g grain\textsuperscript{-1} d\textsuperscript{-1};
  38. $h_{N,\,grain}$ is a multiplier for nitrogen deficit effect on grain,
  39. which is specified by `n_fact_grain` in wheat.xml and has
  40. a default value of 1; $C_{N}$ is the nitrogen concentration of `Stem`
  41. or `Leaf` parts; $C_{N,\,crit}$ and $C_{N,\,min}$ are critical
  42. and minimum nitrogen concentration, respectively, for `Stem`
  43. and `Leaf` parts. $C_{N,\,crit}$ and $C_{N,\,min}$ are functions
  44. of growth stage and nitrogen concentration which is defined by parameters
  45. `x_stage_code`, `y_n_conc_min_leaf`, `y_n_conc_crit_leaf`,
  46. `y_n_conc_min_stem`, `y_n_conc_crit_stem` in
  47. wheat.xml and linearly interpolated by APSIM (Fig. \@ref(fig:wdNitrogenConcentration));
  48. and $f_{c,\,N}$ is a factor with a value of 1 (i.e. no impact) for
  49. Stem, and is depending on CO\textsubscript{2} for `Leaf` (Fig. \@ref(fig:wbCO2CritLeaf)).
  50. ```{r wdTempGrainFill,fig.cap='Response of the factor affecting the rate of grain filling in regards to daily mean temperature.' }
  51. p <- wdVisXY(wheat_xml,
  52. "x_temp_grainfill", "y_rel_grainfill",
  53. xlab = expression(paste("Daily mean temperature", ~"("*degree*"C)")),
  54. ylab = 'Factor affecting the rate of grain filling')
  55. print(p)
  56. ```
  57. ```{r wbCO2CritLeaf,fig.cap='The CO2 modifier for critical nitrogen concentration of Leaf.' }
  58. p <- wdVisXY(wheat_xml,
  59. "x_co2_nconc_modifier", "y_co2_nconc_modifier",
  60. xlab = 'CO2 concentration',
  61. ylab = 'Critical nitrogen concentration of Leaf')
  62. print(p)
  63. ```
  64. Finally, `Grain` demand is limited by the maximum grain size
  65. (corresponding to $D_{gm}$)
  66. \begin{equation}
  67. \begin{array}{c}
  68. D_{g}=\min(D_{g},\,D_{gm})\\
  69. D_{gm}=N_{g}S_{gm}-Q_{meal}\qquad(D_{gm}\geq0)
  70. \end{array}
  71. \end{equation}
  72. where $N_{g}$ is the grain number; $Q_{meal}$ is the dry weight
  73. of `Meal` part (i.e. the `Grains`); $S_{gm}$ is the
  74. maximum grain size which is specified by max_grain_size in wheat.xml
  75. and is a cultivar-specific parameter with 0.04 g for default value.
  76. ## `Pod` demand\label{subsec:Pod-demand}
  77. `Pod` demand ($D_{p}$) is calculated by `Grain` demand
  78. ($D_{g}$, Equation \@ref(eq:MealDemand)) or daily biomass accumulation
  79. ($\Delta Q$, Equation \@ref(eq:actualBiomassProduction))
  80. \begin{equation}
  81. D_{p}=\begin{array}{c}
  82. D_{g}h_{p}(S)\qquad D_{g}\text{>0}\\
  83. \Delta Qh_{p}(S)\qquad D_{g}\text{=0}
  84. \end{array} (\#eq:GrainDemand)
  85. \end{equation}
  86. where $h_{p}(S)$ is a function of the growth stage ($S$) and of
  87. the `Pod` demand fraction of $D_{g}$ or $\Delta Q$. $h_{p}(S)$
  88. is defined by parameters `x_stage_no_partition` and `y_frac_pod`
  89. in wheat.xml and linearly interpolated by APSIM (Fig. \@ref(fig:wdFractionOfPod)).
  90. ```{r wdFractionOfPod,fig.cap='Pod demand over the stages (fraction of Grain demand or of daily biomass accumulation).' }
  91. p <- wdVisXY(wheat_xml,
  92. "x_stage_no_partition", "y_frac_pod",
  93. xlab = "Stage codes",
  94. ylab = "Pod demand fraction of grain demand \n or daily biomass accumulation")
  95. print(p)
  96. ```