04-biomass-production.Rmd 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372
  1. # Biomass accumulation (Photosynthesis)
  2. The daily biomass accumulation ($\Delta Q$) corresponds to dry-matter
  3. above-ground biomass, and is calculated as a potential biomass accumulation
  4. resulting from radiation interception ($\Delta Q_{r}$, Equation \@ref(eq:BiomassProduction))
  5. that is limited by soil water deficiency ($\Delta Q_{w}$, Equation \@ref(eq:WaterStressBiomassProduction-1)).
  6. ## Potential biomass accumulation from radiation use efficiency\label{subsec:Radiation-limited-biomass}
  7. The radiation-limited dry-biomass accumulation ($\Delta Q_{r}$) is
  8. calculated by the intercepted radiation ($I$), radiation use efficiency
  9. ($RUE$), diffuse factor ($f_{d}$, \autoref{par:Diffuse-factor}),
  10. stress factor ($f_{s}$, Equation \@ref(eq:StressFactor4Photosynthesis))
  11. and carbon dioxide factor ($f_{c}$, Equation \@ref(eq:CO2Factor4Photosynthesis)).
  12. \begin{equation}
  13. \Delta Q_{r}=I\times RUE\times f_{d}\times f_{s}\times f_{c} (\#eq:BiomassProduction)
  14. \end{equation}
  15. where $f_{d}$, $f_{s}$ and $f_{c}$ are defined in the wheat.xml
  16. file. In the current version of APSIM-Wheat, only `Leaf` produces
  17. photosynthate. Diffuse factor ($f_{d}$) equals to 1 (\autoref{par:Diffuse-factor}),
  18. so that Equation \@ref(eq:BiomassProduction) can be:
  19. \begin{equation}
  20. \Delta Q_{r}=I\times RUE\times f_{s}\times f_{c} (\#eq:BiomassProduction2)
  21. \end{equation}
  22. ### Radiation interception
  23. Radiation interception is calculated from the leaf area index (LAI,
  24. m$^{2}$ m$^{-2}$) and the extinction coefficient (\textit{k}) \citep{monsi2005onthe}.
  25. \begin{equation}
  26. I=I_{0}(1-\exp(-k\times LAI\times f_{h})/f_{h}) (\#eq:RadiationInterception)
  27. \end{equation}
  28. where $I_{0}$ is the total radiation at the top of the canopy (MJ)
  29. which is directly imported from weather records; $f_{h}$ is light
  30. interception modified to give hedge-row effect with skip row. $f_{h}$
  31. could be calculated based on the canopy width, but is not used in
  32. the current version of APSIM (i.e. $f_{h}$ = 1). So, Equation \@ref(eq:RadiationInterception)
  33. is reduced to.
  34. \begin{equation}
  35. I=I_{0}(1-\exp(-k\times LAI)) (\#eq:RadiationInterception-1)
  36. \end{equation}
  37. Extinction coefficient ($k$) varies with row spacing,
  38. \begin{equation}
  39. k=h_{e}(W_{r})
  40. \end{equation}
  41. where $W_{r}$ is the row spacing which is specified by the user (in
  42. the APSIM interface, the .sim or .apsim file); $h_{e}$ is a function
  43. of rowing spacing which is defined for both green leaf and dead leaves
  44. by parameters `x_row_spacing`, `y_extinct_coef`
  45. in the wheat.xml file (Fig. \@ref(fig:wdRowExtinct)) and is linearly
  46. interpolated by APSIM. In the current version of APSIM-Wheat, no impact
  47. of row spacing is considered (Fig. \@ref(fig:wdRowExtinct))
  48. ```{r wdRowExtinct,fig.cap='Values of extinction coefficient for different row spacings.' }
  49. p <- wdVisXY(wheat_xml,
  50. "x_row_spacing",
  51. c("y_extinct_coef",
  52. 'y_extinct_coef_dead'),
  53. xlab = 'Row spacing (mm)',
  54. ylab = 'Extinction coefficient (k)',
  55. keylab = c('Green leaf', 'Dead leaf'),
  56. keypos = c(0.9, 0.5))
  57. print(p)
  58. ```
  59. ### Radiation use efficiency
  60. $RUE$ (g MJ$^{\text{-1}}$) is a function of growth stages which
  61. is defined by parameters `x_stage_rue` and `y_rue`
  62. in wheat.xml (Fig. \@ref(fig:wdRUE)) and linearly interpolated by APSIM.
  63. In the current version of APSIM-Wheat, $RUE$ equal to 1.24 from emergence
  64. to the end of grain-filling and does not vary as a function of daily
  65. incident radiation as in the model NWHEAT.
  66. ```{r wdRUE,fig.cap='Radiation use efficiency (RUE) for different growth stages.' }
  67. p <- wdVisXY(wheat_xml,
  68. "x_stage_rue", "y_rue",
  69. xlab = 'Stage code',
  70. ylab = 'RUE')
  71. print(p)
  72. ```
  73. \subsubsection{Stress factor (Temperature, nitrogen, phosphorus (not applied), oxygen
  74. (not applied))}
  75. Actual daily radiation-limited biomass accumulation can be reduced
  76. by a stress factor ($f_{s}$, Equation \@ref(eq:BiomassProduction) and
  77. Equation \@ref(eq:BiomassProduction2)). This stress factor is the minimum
  78. value of a temperature factor ($f_{T,\ photo}$, Equation \@ref(eq:TemStressPhoto)),
  79. a nitrogen factor ($f_{N\ photo}$, Equation \@ref(eq:NStressPhoto)), a
  80. phosphorus factor ($f_{P\ photo}$) and an oxygen factor ($f_{O\ photo}$).
  81. \begin{equation}
  82. f_{s}=\min(f_{T,\ photo},\ f_{N,\ photo},\ f_{P,\ photo},\ f_{O,\ photo}) (\#eq:StressFactor4Photosynthesis)
  83. \end{equation}
  84. No phosphorus stress $f_{P,\,photo}$ and oxygen stress $f_{O,\,photo}$
  85. are applied in the current version of APSIM-Wheat. So, Equation \@ref(eq:StressFactor4Photosynthesis)
  86. is reduced to
  87. \begin{equation}
  88. f_{s}=\min(f_{T,\ photo},\ f_{N,\ photo}) (\#eq:StressFactor4Photosynthesis2)
  89. \end{equation}
  90. \paragraph{The temperature factor}
  91. $f_{T,\ photo}$ is a function of the daily mean temperature and is
  92. defined by parameters `x_ave_temp` and `y_stress_photo`
  93. in the wheat.xml (Fig. \@ref(fig:wdTemperatureFactorOnPhoto)). Values
  94. are linearly interpolated by APSIM. The temperature stress is applied
  95. from sowing to harvest.
  96. \begin{equation}
  97. f_{T,\ photo}=h_{T,\ photo}(\frac{T_{max}+T_{min}}{2}) (\#eq:TemStressPhoto)
  98. \end{equation}
  99. ```{r wdTemperatureFactorOnPhoto,fig.cap='Temperature factor in response to mean daily temperature.' }
  100. p <- wdVisXY(wheat_xml,
  101. "x_ave_temp", "y_stress_photo",
  102. xlab = expression(paste("Mean daily temperature", ~"("*degree*"C)")),
  103. ylab = expression(Temperature~factor~(f[T])))
  104. print(p)
  105. ```
  106. \paragraph{The nitrogen factor}
  107. $f_{N,\,photo}$ is determined by the difference between leaf nitrogen
  108. concentration and leaf minimum and critical nitrogen concentration.
  109. \begin{equation}
  110. f_{N,\,photo}=R_{N,\,photo}\sum_{leaf}\frac{C_{N}-C_{N,\,min}}{C_{N,\,crit}-C_{N,\,min}} (\#eq:NStressPhoto0)
  111. \end{equation}
  112. where $C_{N}$ is the nitrogen concentration of `Leaf` parts;
  113. $R_{N,\,expan}$ is multiplier for nitrogen deficit effect on phenology
  114. which is specified by `N_fact_photo` in the wheat.xml and
  115. default value is 1.5.
  116. \paragraph{The CO$_{\text{2}}$ factor}
  117. For C3 plants (like wheat), the CO$_{\text{2}}$ factor of APSIM is
  118. calculated by a function of environmental CO$_{\text{2}}$ concentration
  119. ($C$, ppm) and daily mean temperature ($T_{mean}$) as published
  120. by \citet{reyenga1999modelling}
  121. \begin{equation}
  122. f_{c}=\frac{(C-C_{i})(350+2C_{i})}{(C+2C_{i})(350-C_{i})} (\#eq:CO2Factor4Photosynthesis)
  123. \end{equation}
  124. where $C_{i}$ is the temperature dependent CO$_{\text{2}}$ compensation
  125. point (ppm) and is derived from the following function.
  126. \begin{equation}
  127. C_{i}=\frac{163-T_{mean}}{5-0.1T_{mean}}
  128. \end{equation}
  129. ```{r wdCardonDioxideFactor,fig.cap='CO$_{2}$ factor in response to the CO$_{2}$ level ($C$) for different mean air temperatures.' }
  130. p <- wdCarbonDioxideFactor()
  131. print(p)
  132. ```
  133. \paragraph{Diffuse factor (not used in the current version)\label{par:Diffuse-factor}}
  134. The daily diffuse fraction was calculated using the functions suggested
  135. by \citet{roderick1999estimating}:
  136. \begin{equation}
  137. \begin{cases}
  138. \frac{R_{d}}{R_{s}}=Y_{0} & \qquad for\:\frac{R_{s}}{R_{o}}\leq X_{0}\\
  139. \frac{R_{d}}{R_{s}}=A_{0}+A_{1}\frac{R_{s}}{R_{o}} & \qquad for\:X_{0}<\frac{R_{s}}{R_{o}}\leq X_{1}\\
  140. \frac{R_{d}}{R_{s}}=Y_{1} & \qquad for\:\frac{R_{s}}{R_{o}}>X_{1}
  141. \end{cases} (\#eq:DiffuseFraction)
  142. \end{equation}
  143. where
  144. \begin{equation}
  145. \begin{array}{c}
  146. A_{0}=Y_{1}-A_{1}X_{1}\\
  147. A_{1}=\frac{Y_{1}-Y_{0}}{X_{1}-X_{0}}
  148. \end{array}
  149. \end{equation}
  150. where $R_{o}$ is the daily extra-terrestrial solar irradiance (i.e.
  151. top of the atmosphere); $R_{d}$ and $R_{s}$ are the daily diffuse
  152. and global solar irradiance at the surface, respectively. $X_{0}$,
  153. $X_{1}$, $Y_{0}$ and $Y_{1}$ are four empirical parameters.
  154. \begin{equation}
  155. \begin{array}{l}
  156. X_{0}=0.26,\qquad Y_{0}=0.96,\qquad Y_{1}=0.05,\;and\\
  157. X_{1}=0.80-0.0017|\varphi|+0.000044|\varphi|^{2}
  158. \end{array}
  159. \end{equation}
  160. where $\varphi$ is latitude.
  161. $R_{o}$ is derived from this function
  162. \begin{equation}
  163. R_{0}=\frac{86400\times1360\times(\varpi\times\sin(\varphi)\times\sin(\theta)+\cos(\varphi)\times\cos(\theta)\times\sin(\varpi_{0}))}{1000000\pi}
  164. \end{equation}
  165. where $\varpi_{0}$ is the time of sunrise and sunset, which derives
  166. from any solar declination ($\theta$) and latitude ($\varphi$) in
  167. terms of local solar time when sunrise and sunset actually occur (\url{http://en.wikipedia.org/wiki/Sunrise_equation})
  168. \begin{equation}
  169. \varpi_{0}=\arccos(-\tan(\varphi)\tan(\theta))
  170. \end{equation}
  171. Solar declination ($\theta$) can be calculated by
  172. \begin{equation}
  173. \theta=23.45\sin(\frac{2\pi}{365.25}(N-82.25))
  174. \end{equation}
  175. where $N$ is day of year.
  176. $f_{d}$ is calculated by a function of the diffuse fraction which
  177. is not implemented in current wheat module, (i.e. $f_{d}$ = 1).
  178. ## Actual daily biomass accumulation
  179. The actual daily biomass accumulation ($\Delta Q$) results from water
  180. limitation applied on the potential radiation-driven biomass accumulation
  181. ($\Delta Q_{r}$). This water-limited biomass ($\Delta Q_{w}$) is
  182. a function of the ratio between the daily water uptake ($W_{u}$,
  183. Equation \@ref(eq:WaterUpdate)) and demand ($W_{d}$, Equation \@ref(eq:soilWaterDemand-1))
  184. capped by
  185. \begin{equation}
  186. \Delta Q_{w}=\Delta Q_{r}f_{w,\,photo}=\Delta Q_{r}\frac{W_{u}}{W_{d}} (\#eq:WaterStressBiomassProduction-1)
  187. \end{equation}
  188. where $f_{w,\,photo}$ is the water stress factor affecting photosynthesis
  189. (Equation \@ref(eq:swstressphoto)); $W_{u}$ is the actual daily water
  190. uptake from the root system (which corresponds to the soil water supply
  191. ($W_{s}$) capped by $W_{d}$), $W_{d}$ is the soil water demand
  192. of Leaf and Head parts (\autoref{sec:Crop-Water-Relations}).
  193. When the soil water is non-limiting ($f_{w,\,photo}$ = 1, i.e. $W_{d}\geq W_{s}$),
  194. biomass accumulation is limited by the radiation ($\Delta Q=\Delta Q_{r}$,
  195. Equation \@ref(eq:actualBiomassProduction)). When the soil water is limiting,
  196. biomass accumulation is limited by water supply ($\Delta Q=\Delta Q_{w}$).
  197. The water demand ($W_{d}$, in mm) corresponds to the amount of water
  198. the crop would have transpired in the absence of soil water constraint,
  199. and is calculated from the potential biomass accumulation from RUE
  200. ($\Delta Q_{r}$, Equation \@ref(eq:BiomassProduction)). Following \citet{sinclair1986waterand},
  201. transpiration demand is modeled as a function of the current day's
  202. crop growth rate, estimated by the potential biomass accumulation
  203. associated with intercepted radiation ($\Delta Q_{r}$, see Equation \@ref(eq:BiomassProduction)),
  204. divided by the transpiration efficiency.
  205. \begin{equation}
  206. W_{d}=\frac{\Delta Q_{r}-R}{TE} (\#eq:soilWaterDemand-1)
  207. \end{equation}
  208. where $R$ is respiration rate and equals to zero in the current version
  209. of APSIM-Wheat, $TE$ is transpiration efficiency (Equation \@ref(eq:TranspirationEfficiency)).
  210. See \autoref{sec:Crop-Water-Relations} for more details about water
  211. demand and supply. \medskip
  212. The daily biomass accumulation ($\Delta Q$) corresponds to dry matter
  213. above ground biomass is limited by the radiation interception ($\Delta Q_{r}$,
  214. Equation \@ref(eq:BiomassProduction)) or by soil water deficiency ($\Delta Q_{w}$,
  215. Equation \@ref(eq:WaterStressBiomassProduction)), so that daily biomass
  216. accumulation can be expressed as:
  217. \begin{equation}
  218. \Delta Q=\begin{cases}
  219. \Delta Q_{r}\qquad & W_{u}=W_{d}\\
  220. \Delta Q_{w}\qquad & W_{u}<W_{d}
  221. \end{cases} (\#eq:actualBiomassProduction)
  222. \end{equation}
  223. where $W_{s}$ is water supply, $W_{d}$ is the soil water demand
  224. from the shoot, limited by radiation interception ( Section @ref(Crop-water-demand)).
  225. In the current APSIM-Wheat, $W_{d}$ is actually only directly affected
  226. by the soil water demand of the leaf ( Section @ref(Crop-water-demand)).
  227. $W_{u}$ and $W_{d}$ are calculated by soil module of APSIM.