12-nitrogen.Rmd 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346
  1. # Nitrogen
  2. The nitrogen stress phase begins before 30\% floral initiation to
  3. finish at the 'harvest ripe' phase (Fig. \@ref(fig:PhenologWheatModule)),
  4. which are defined by `n_stress` in wheat.xml.
  5. ## Nitrogen supply
  6. Ammonium ($\text{NH}_{4}^{+}$) is not taken up in wheat as wheat.xml
  7. parameter knh4 (constant for NH\textsubscript{4} extraction) is equal
  8. to 0.
  9. The model uses a simplified formulation for nitrate $\text{NO}_{3}^{-}$
  10. uptake somewhat similar in structure to that employed in water uptake.
  11. During the nitrogen stress phase (Fig. \@ref(fig:PhenologWheatModule)),
  12. nitrogen supply for soil layer $i$ ($N_{s}(i)$, g m\textsuperscript{-2})
  13. is calculated as follows:
  14. \begin{equation}
  15. N_{s}(i)=K_{NO3}N(i)[N(i)\frac{1000}{\text{BD}(i)D_{s}(i)}]\frac{\text{\text{ESW}}_{a}(i)}{\text{ESW}_{p}(i)}
  16. \end{equation}
  17. where $K_{NO3}$ is a constant of extractable soil nitrogen, which
  18. is defined by `kno3` with default value 0.02; $N(i)$ is the
  19. $\text{NO}_{3}^{-}$concentration in soil layer $i$ (g m\textsuperscript{-2});
  20. $\text{BD}(i)$ is the bulk density of soil layer $i$ (g cm\textsuperscript{-3});
  21. $D_{s}(i)$ is the depth of soil layer $i$ (cm); $\text{ESW}_{a}(i)$
  22. is the actual extractable soil water in soil layer $i$ (Equation \@ref(eq:SoilWaterESW));
  23. $\text{ESW}_{p}(i)$ is the potential extractable soil water in
  24. soil layer $i$ (Equation \@ref(eq:SoilWaterESW)).
  25. During non-nitrogen stress phase (Fig. \@ref(fig:PhenologWheatModule)),
  26. wheat could access to all available nitrogen.
  27. \begin{equation}
  28. N_{s}(i)=N(i)\frac{1000}{\text{BD}(i)D_{s}(i)} (\#eq:NitrogenSupply)
  29. \end{equation}
  30. The values of $N_{s}(i)$ for each layer of root presented are summed
  31. to get a total potential nitrogen uptake (or crop N supply, $N_{s}$)
  32. and then each layer $N_{s}(i)$ is scaled by maximum total nitrogen
  33. uptake ($N_{s,\,max}$), which is defined by `total_n_uptake_max`
  34. with default value 0.6 g m\textsuperscript{-2}.
  35. \begin{equation}
  36. N_{s}'(i)=N_{s}(i)\frac{N_{s,\,max}}{N_{s}}
  37. \end{equation}
  38. where $N_{s}'(i)$ is the actual nitrogen uptake in the layer $i$.
  39. ## Nitrogen demand
  40. Total wheat nitrogen demand is the sum of the N demand in all parts
  41. (i.e. `Leaf`, `Stem`, and `Pod`). Wheat has a
  42. defined minimum ($C_{N,\,min}$), critical ($C_{N,\,crit}$) and maximum
  43. ($C_{N,\,max}$) nitrogen concentration for all plant parts (Fig. \@ref(fig:wdNitrogenConcentration)).
  44. These concentration limits change with phenological stages (Fig. \@ref(fig:wdNitrogenConcentration)).
  45. And they are defined by parameters `x_stage_code`, `y_n_conc_min_leaf`,
  46. `y_n_conc_crit_leaf`, `y_n_conc_max_leaf`, `y_n_conc_min_stem`,
  47. `y_n_conc_crit_stem`, \texttt{y_n_conc_max_stem, y_n_conc_min_pod,
  48. y_n_conc_crit_pod, y_n_conc_max_pod} in wheat.xml and linearly
  49. interpolated by APSIM .
  50. Physiologically, minimum nitrogen concentration ($C_{N,\,min}$) corresponds
  51. to the structural N required for the plant structure, and which cannot
  52. be re-translocated. Critical nitrogen concentration ($C_{N,\,crit}$)
  53. corresponds to the minimum concentration of N that plant parts will
  54. attempt to maintain (it drives the `N demand`
  55. of the part), and maximum nitrogen concentration ($C_{N,\,max}$)
  56. reflects to the capacity of the part to accumulate the extra available
  57. N (i.e. fulfilling more than its `demand`)
  58. up to a this maximum threshold N.
  59. ```{r wdNitrogenConcentration,fig.height=6,fig.cap='Relationship between maximum, critical, minimum nitrogen concentration and growth stages for the different plant parts (Leaf, Stem and Pod). Parameters are defined by defined by parameters x_stage_code, y_n_conc_min_leaf, y_n_critonc_crit_leaf, y_n_conc_max_leaf, y_n_conc_min_stem, y_n_critonc_crit_stem, y_n_critonc_max_stem in wheat.xml.' }
  60. p <- wdNitrogenConcentration()
  61. print(p$pod, position = c(0, 0, 1, 0.35), more = TRUE)
  62. print(p$stem, position = c(0, 0.31, 1, 0.68), more = TRUE)
  63. print(p$leaf, position = c(0, 0.65, 1, 1))
  64. ```
  65. ### Nitrogen demand of `Grain`
  66. `Grain` nitrogen demand starts at anthesis and is calculated
  67. from grain number, thermal time and a potential grain nitrogen filling
  68. rate (g grain\textsuperscript{-1} $^{\circ}$Cd\textsuperscript{-1}).
  69. \begin{equation}
  70. N_{D,\;grain}=N_{g}\,R_{N,\,poten,}\,f_{N,\;grain}\,h_{grain}(T) (\#eq:NitrogenDemand)
  71. \end{equation}
  72. where $N_{g}$ is the grain number, $R_{N,\,poten,}$ is the potential
  73. nitrogen filling rate, which is defined by parameter `potential_grain_n_filling_rate`
  74. in wheat.xml with default value 0.000055 g grain\textsuperscript{-1}
  75. d\textsuperscript{-1}. $f_{N,\;grain}$ is the nitrogen factor of
  76. grain filling (Equation \@ref(eq:NStressFilling)). $h_{grain}(T)$ is a
  77. function of daily mean temperature ($T$) to influence of grain filling
  78. (Fig. \@ref(fig:wdNitrogenTem)).
  79. ```{r wdNitrogenTem,fig.cap='Relationship between nitrogen demand of Grain and daily mean temperature.' }
  80. p <- wdVisXY(wheat_xml,
  81. "x_temp_grain_n_fill", "y_rel_grain_n_fill",
  82. xlab = expression(paste("Daily mean temperature", ~"("*degree*"C)")),
  83. ylab = 'Temperature factor to nitrogen demand of grain')
  84. print(p)
  85. ```
  86. ### Nitrogen demand of other parts
  87. Demand of nitrogen in each part (except Grain) attempts to maintain
  88. nitrogen at the critical (non-stressed) level. Nitrogen demand on
  89. any day is the sum of the demands from the pre-existing biomass of
  90. each part required to reach critical nitrogen content, plus the nitrogen
  91. required to maintain critical nitrogen concentrations in that day's
  92. produced biomass. For each plant part (`Leaf`, `Stem`,
  93. and `Pod`) the nitrogen demand is given by:
  94. \begin{equation}
  95. N_{D,\;crit}=\frac{\Delta Q_{part}C_{N,\,crit}}{f_{w,\,photo}}+f_{n}(C_{N,\,crit}-C_{N,\,part})\qquad if\:C_{N,\,crit}>C_{N,\,part}\;\&\;Q_{part}>0
  96. \end{equation}
  97. \begin{equation}
  98. N_{D,\;max}=\frac{\Delta Q_{part}C_{N,\,max}}{f_{w,\,photo}}+f_{n}(C_{N,\,max}-C_{N,\,part})\qquad if\:C_{N,\,max}>C_{N,\,part}\;\&\;Q_{part}>0
  99. \end{equation}
  100. where $\Delta Q_{part}$ is the growth dry weight of parts, $Q_{part}$
  101. is the green (i.e. not senesced) dry weight of parts, $f_{w,\,photo}$
  102. is soil water stress of biomass accumulation (Equation \@ref(eq:swstressphoto));
  103. $C_{N,\,part}$ is the nitrogen concentration of parts; $f_{n}$ is
  104. defined by parameter `n_deficit_uptake_fraction` in wheat.xml
  105. with default value 0.0001. $C_{N,\,crit}$ and $C_{N,\,max}$ are
  106. the N concentration critic and maximal of the parts, respectively
  107. (Fig. \@ref(fig:wdNitrogenConcentration)). $N_{D,\;crit}$
  108. and $N_{D,\;max}$ equal to 0, if $Q_{part}=0$.
  109. ## Nitrogen uptake, partitioning and re-translocation
  110. ### Nitrogen concentrations in wheat parts
  111. The N concentration in Leaf is calculated as follows:
  112. \begin{equation}
  113. C_{N,\,leaf}=N_{leaf}/Q_{leaf}
  114. \end{equation}
  115. ### Nitrogen uptake
  116. Daily total nitrogen uptake ($N_{u}$) is the lesser of N demand ($N_{d}$,
  117. Equation \@ref(eq:NitrogenDemand)) and N supply $N_{s}$, Equation \@ref(eq:NitrogenSupply)).
  118. \begin{equation}
  119. N_{u}=\text{min}(N_{d},\;N_{s})
  120. \end{equation}
  121. ### Nitrogen translocation
  122. Daily total nitrogen uptake is distributed to the plant parts in proportion
  123. to their individual demands.
  124. ### Nitrogen re-translocation
  125. If there is insufficient nitrogen supplied from senescing material
  126. and soil nitrogen uptake, Grain nitrogen demand is met by re-translocating
  127. nitrogen from other plant parts. Nitrogen is available for re-translocation
  128. from un-senesced leaves and stems until they reach their defined minimum
  129. nitrogen concentration. No N re-translocation is attributed to other
  130. parts than `Grain`.
  131. ## Nitrogen stresses
  132. ### Phenology
  133. Nitrogen stress on phenology (via $f_{N,\,pheno}$ in Equation \@ref(eq:CumThermalTime))
  134. is determined by the difference between organ nitrogen concentration
  135. and organ minimum and critical nitrogen concentration.
  136. \begin{equation}
  137. f_{N,\,pheno}=h_{N,\,pheno}\sum_{stem,\,leaf}\frac{C_{N}-C_{N,\,min}}{C_{N,\,crit}\times f_{c,\,N}-C_{N,\,min}} (\#eq:NitrogenStress)
  138. \end{equation}
  139. where $C_{N}$ is the nitrogen concentration of `Stem` or `Leaf`
  140. parts; $h_{N,\,pheno}$ is multiple for nitrogen deficit effect on
  141. phenology which is specified by `N_fact_pheno` in the wheat.xml
  142. and default value is 100; $C_{N,\,crit}$ and $C_{N,\,min}$ are the
  143. N concentration critic and minimal of the parts, respectively (Fig. \@ref(fig:wdNitrogenConcentration));
  144. and $f_{c,\,N}$ is a factor with a value of 1 (i.e. no impact) for
  145. Stem, and is depending on CO\textsubscript{2} for `Leaf` (Fig. \@ref(fig:wbCO2CritLeaf)).
  146. The nitrogen stress on phenology is used in the calculation of the
  147. `adjusted` thermal time (Equation \@ref(eq:CumThermalTime)).
  148. However, In the current version of APSIM-Wheat module, the default
  149. parameters are applied for no nitrogen water stress for phenology.
  150. ### Biomass accumulation
  151. Nitrogen stress on biomass accumulation (via $f_{N,\,photo}$ in Equation \@ref(eq:StressFactor4Photosynthesis))
  152. is determined by the difference between leaf nitrogen concentration
  153. and leaf minimum and critical nitrogen concentration.
  154. \begin{equation}
  155. f_{N,\,photo}=h_{N,\,photo}\sum_{leaf}\frac{C_{N}-C_{N,\,min}}{C_{N,\,crit}\times f_{c,\,N}-C_{N,\,min}} (\#eq:NStressPhoto)
  156. \end{equation}
  157. where $C_{N}$ is the nitrogen concentration of `Leaf` parts;
  158. $h_{N,\,photo}$ is multiplier for nitrogen deficit effect on photosynthesis
  159. which is specified by `N_fact_photo` in the wheat.xml and
  160. default value is 1.5; $C_{N,\,crit}$ and $C_{N,\,min}$ are the N
  161. concentration critic and minimal of the parts, respectively (Fig. \@ref(fig:wdNitrogenConcentration));
  162. and $f_{c,\,N}$ is a factor with a value of 1 (i.e. no impact) for
  163. Stem, and is depending on CO\textsubscript{2} for `Leaf` (Fig. \@ref(fig:wbCO2CritLeaf)).
  164. The nitrogen stress on biomass accumulation affects the radiation-limited
  165. biomass accumulation ($\Delta Q_{r}$, Equation \@ref(eq:actualBiomassProduction)).
  166. ### Leaf appearance and expansion (i.e. leaf number and LAI)
  167. Nitrogen stress on leaf appearance and expansion (via $f_{N,\,expan}$
  168. in Equation \@ref(eq:LeafExpansionStress)) is determined by the difference
  169. between leaf nitrogen concentration and leaf minimum and critical
  170. nitrogen concentration.
  171. \begin{equation}
  172. f_{N,\,expan}=h_{N,\,expan}\sum_{leaf}\frac{C_{N}-C_{N,\,min}}{C_{N,\,crit}\times f_{c,\,N}-C_{N,\,min}} (\#eq:NStressLeafExpansion)
  173. \end{equation}
  174. where $C_{N}$ is the nitrogen concentration of `Leaf` parts;
  175. $h_{N,\,expan}$ is multiplier for nitrogen deficit effect on expansion
  176. which is specified by `N_fact_expansion` in the wheat.xml
  177. (default value 1); $C_{N,\,crit}$ and $C_{N,\,min}$ are the N concentration
  178. critic and minimal of the parts, respectively (Fig. \@ref(fig:wdNitrogenConcentration));
  179. and $f_{c,\,N}$ is a factor with a value of 1 (i.e. no impact) for
  180. Stem, and is depending on CO\textsubscript{2} for `Leaf` (Fig. \@ref(fig:wbCO2CritLeaf)).
  181. The nitrogen stress on leaf appearance and expansion affects the potential
  182. leaf number ($N_{d,\,pot}$; Equation \@ref(eq:PotentialNodeNumberDaily))
  183. and the stressed leaf area index ($\Delta\text{LAI}_{d,\,s}$, Equation \@ref(eq:StressLeafArea)).
  184. ### Grain filling (biomass and nitrogen demand of grain)
  185. Nitrogen stress on grain filling affects the biomass demand of `Grain`
  186. (via $f_{N,\,grain}$ in Equation \@ref(eq:MealDemand)) and the N demand
  187. of `Grain` (Equation \@ref(eq:NitrogenDemand)).
  188. The nitrogen factor $f_{N,\,grain}$ (that impacts N demand of grain)
  189. is determined by the difference between organ nitrogen concentration
  190. and organ minimum and critical nitrogen concentration as follows:.
  191. \begin{equation}
  192. f_{N,\,grain}=\frac{h_{N,\ poten}}{h_{N,\ min}}h_{N,\,grain}\sum_{stem,\,leaf}\frac{C_{N}-C_{N,\,min}}{C_{N,\,crit}\times f_{c,\,N}-C_{N,\,min}}\qquad(0\leq f_{N,\,fill}\leq1) (\#eq:NStressFilling)
  193. \end{equation}
  194. where $h_{N,\ poten}$ is the potential rate of grain filling which
  195. is specified by `potential_grain_n_filling_rate` in wheat.xml
  196. and has a default value of 0.000055 g grain\textsuperscript{-1} d\textsuperscript{-1};
  197. $h_{N,\ min}$ is the minimum rate of grain filling which is specified
  198. by `minimum_grain_n_filling_rate` in wheat.xml and has
  199. a default value of 0.000015 g grain\textsuperscript{-1} d\textsuperscript{-1};
  200. $h_{N,\,grain}$ is a multiplier for nitrogen deficit effect on grain,
  201. which is specified by `n_fact_grain` in wheat.xml and has
  202. a default value of 1; $C_{N}$ is the nitrogen concentration of `Stem`
  203. or `Leaf` parts; $C_{N,\,crit}$ and $C_{N,\,min}$ are critical
  204. and minimum nitrogen concentration, respectively, for `Stem`
  205. and `Leaf` parts. $C_{N,\,crit}$ and $C_{N,\,min}$ are functions
  206. of growth stage and nitrogen concentration which is defined by parameters
  207. `x_stage_code`, `y_n_conc_min_leaf`, `y_n_conc_crit_leaf`,
  208. `y_n_conc_min_stem`, `y_n_conc_crit_stem` in
  209. wheat.xml and linearly interpolated by APSIM (Fig. \@ref(fig:wdNitrogenConcentration));
  210. and $f_{c,\,N}$ is a factor with a value of 1 (i.e. no impact) for
  211. Stem, and is depending on CO\textsubscript{2} for `Leaf` (Fig. \@ref(fig:wbCO2CritLeaf)).