123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346 |
- # Nitrogen
- The nitrogen stress phase begins before 30\% floral initiation to
- finish at the 'harvest ripe' phase (Fig. \@ref(fig:PhenologWheatModule)),
- which are defined by `n_stress` in wheat.xml.
- ## Nitrogen supply
- Ammonium ($\text{NH}_{4}^{+}$) is not taken up in wheat as wheat.xml
- parameter knh4 (constant for NH\textsubscript{4} extraction) is equal
- to 0.
- The model uses a simplified formulation for nitrate $\text{NO}_{3}^{-}$
- uptake somewhat similar in structure to that employed in water uptake.
- During the nitrogen stress phase (Fig. \@ref(fig:PhenologWheatModule)),
- nitrogen supply for soil layer $i$ ($N_{s}(i)$, g m\textsuperscript{-2})
- is calculated as follows:
- \begin{equation}
- N_{s}(i)=K_{NO3}N(i)[N(i)\frac{1000}{\text{BD}(i)D_{s}(i)}]\frac{\text{\text{ESW}}_{a}(i)}{\text{ESW}_{p}(i)}
- \end{equation}
- where $K_{NO3}$ is a constant of extractable soil nitrogen, which
- is defined by `kno3` with default value 0.02; $N(i)$ is the
- $\text{NO}_{3}^{-}$concentration in soil layer $i$ (g m\textsuperscript{-2});
- $\text{BD}(i)$ is the bulk density of soil layer $i$ (g cm\textsuperscript{-3});
- $D_{s}(i)$ is the depth of soil layer $i$ (cm); $\text{ESW}_{a}(i)$
- is the actual extractable soil water in soil layer $i$ (Equation \@ref(eq:SoilWaterESW));
- $\text{ESW}_{p}(i)$ is the potential extractable soil water in
- soil layer $i$ (Equation \@ref(eq:SoilWaterESW)).
- During non-nitrogen stress phase (Fig. \@ref(fig:PhenologWheatModule)),
- wheat could access to all available nitrogen.
- \begin{equation}
- N_{s}(i)=N(i)\frac{1000}{\text{BD}(i)D_{s}(i)} (\#eq:NitrogenSupply)
- \end{equation}
- The values of $N_{s}(i)$ for each layer of root presented are summed
- to get a total potential nitrogen uptake (or crop N supply, $N_{s}$)
- and then each layer $N_{s}(i)$ is scaled by maximum total nitrogen
- uptake ($N_{s,\,max}$), which is defined by `total_n_uptake_max`
- with default value 0.6 g m\textsuperscript{-2}.
- \begin{equation}
- N_{s}'(i)=N_{s}(i)\frac{N_{s,\,max}}{N_{s}}
- \end{equation}
- where $N_{s}'(i)$ is the actual nitrogen uptake in the layer $i$.
- ## Nitrogen demand
- Total wheat nitrogen demand is the sum of the N demand in all parts
- (i.e. `Leaf`, `Stem`, and `Pod`). Wheat has a
- defined minimum ($C_{N,\,min}$), critical ($C_{N,\,crit}$) and maximum
- ($C_{N,\,max}$) nitrogen concentration for all plant parts (Fig. \@ref(fig:wdNitrogenConcentration)).
- These concentration limits change with phenological stages (Fig. \@ref(fig:wdNitrogenConcentration)).
- And they are defined by parameters `x_stage_code`, `y_n_conc_min_leaf`,
- `y_n_conc_crit_leaf`, `y_n_conc_max_leaf`, `y_n_conc_min_stem`,
- `y_n_conc_crit_stem`, \texttt{y_n_conc_max_stem, y_n_conc_min_pod,
- y_n_conc_crit_pod, y_n_conc_max_pod} in wheat.xml and linearly
- interpolated by APSIM .
- Physiologically, minimum nitrogen concentration ($C_{N,\,min}$) corresponds
- to the structural N required for the plant structure, and which cannot
- be re-translocated. Critical nitrogen concentration ($C_{N,\,crit}$)
- corresponds to the minimum concentration of N that plant parts will
- attempt to maintain (it drives the `N demand`
- of the part), and maximum nitrogen concentration ($C_{N,\,max}$)
- reflects to the capacity of the part to accumulate the extra available
- N (i.e. fulfilling more than its `demand`)
- up to a this maximum threshold N.
- ```{r wdNitrogenConcentration,fig.height=6,fig.cap='Relationship between maximum, critical, minimum nitrogen concentration and growth stages for the different plant parts (Leaf, Stem and Pod). Parameters are defined by defined by parameters x_stage_code, y_n_conc_min_leaf, y_n_critonc_crit_leaf, y_n_conc_max_leaf, y_n_conc_min_stem, y_n_critonc_crit_stem, y_n_critonc_max_stem in wheat.xml.' }
- p <- wdNitrogenConcentration()
- print(p$pod, position = c(0, 0, 1, 0.35), more = TRUE)
- print(p$stem, position = c(0, 0.31, 1, 0.68), more = TRUE)
- print(p$leaf, position = c(0, 0.65, 1, 1))
- ```
- ### Nitrogen demand of `Grain`
- `Grain` nitrogen demand starts at anthesis and is calculated
- from grain number, thermal time and a potential grain nitrogen filling
- rate (g grain\textsuperscript{-1} $^{\circ}$Cd\textsuperscript{-1}).
- \begin{equation}
- N_{D,\;grain}=N_{g}\,R_{N,\,poten,}\,f_{N,\;grain}\,h_{grain}(T) (\#eq:NitrogenDemand)
- \end{equation}
- where $N_{g}$ is the grain number, $R_{N,\,poten,}$ is the potential
- nitrogen filling rate, which is defined by parameter `potential_grain_n_filling_rate`
- in wheat.xml with default value 0.000055 g grain\textsuperscript{-1}
- d\textsuperscript{-1}. $f_{N,\;grain}$ is the nitrogen factor of
- grain filling (Equation \@ref(eq:NStressFilling)). $h_{grain}(T)$ is a
- function of daily mean temperature ($T$) to influence of grain filling
- (Fig. \@ref(fig:wdNitrogenTem)).
- ```{r wdNitrogenTem,fig.cap='Relationship between nitrogen demand of Grain and daily mean temperature.' }
- p <- wdVisXY(wheat_xml,
- "x_temp_grain_n_fill", "y_rel_grain_n_fill",
- xlab = expression(paste("Daily mean temperature", ~"("*degree*"C)")),
- ylab = 'Temperature factor to nitrogen demand of grain')
- print(p)
- ```
- ### Nitrogen demand of other parts
- Demand of nitrogen in each part (except Grain) attempts to maintain
- nitrogen at the critical (non-stressed) level. Nitrogen demand on
- any day is the sum of the demands from the pre-existing biomass of
- each part required to reach critical nitrogen content, plus the nitrogen
- required to maintain critical nitrogen concentrations in that day's
- produced biomass. For each plant part (`Leaf`, `Stem`,
- and `Pod`) the nitrogen demand is given by:
- \begin{equation}
- N_{D,\;crit}=\frac{\Delta Q_{part}C_{N,\,crit}}{f_{w,\,photo}}+f_{n}(C_{N,\,crit}-C_{N,\,part})\qquad if\:C_{N,\,crit}>C_{N,\,part}\;\&\;Q_{part}>0
- \end{equation}
- \begin{equation}
- N_{D,\;max}=\frac{\Delta Q_{part}C_{N,\,max}}{f_{w,\,photo}}+f_{n}(C_{N,\,max}-C_{N,\,part})\qquad if\:C_{N,\,max}>C_{N,\,part}\;\&\;Q_{part}>0
- \end{equation}
- where $\Delta Q_{part}$ is the growth dry weight of parts, $Q_{part}$
- is the green (i.e. not senesced) dry weight of parts, $f_{w,\,photo}$
- is soil water stress of biomass accumulation (Equation \@ref(eq:swstressphoto));
- $C_{N,\,part}$ is the nitrogen concentration of parts; $f_{n}$ is
- defined by parameter `n_deficit_uptake_fraction` in wheat.xml
- with default value 0.0001. $C_{N,\,crit}$ and $C_{N,\,max}$ are
- the N concentration critic and maximal of the parts, respectively
- (Fig. \@ref(fig:wdNitrogenConcentration)). $N_{D,\;crit}$
- and $N_{D,\;max}$ equal to 0, if $Q_{part}=0$.
- ## Nitrogen uptake, partitioning and re-translocation
- ### Nitrogen concentrations in wheat parts
- The N concentration in Leaf is calculated as follows:
- \begin{equation}
- C_{N,\,leaf}=N_{leaf}/Q_{leaf}
- \end{equation}
- ### Nitrogen uptake
- Daily total nitrogen uptake ($N_{u}$) is the lesser of N demand ($N_{d}$,
- Equation \@ref(eq:NitrogenDemand)) and N supply $N_{s}$, Equation \@ref(eq:NitrogenSupply)).
- \begin{equation}
- N_{u}=\text{min}(N_{d},\;N_{s})
- \end{equation}
- ### Nitrogen translocation
- Daily total nitrogen uptake is distributed to the plant parts in proportion
- to their individual demands.
- ### Nitrogen re-translocation
- If there is insufficient nitrogen supplied from senescing material
- and soil nitrogen uptake, Grain nitrogen demand is met by re-translocating
- nitrogen from other plant parts. Nitrogen is available for re-translocation
- from un-senesced leaves and stems until they reach their defined minimum
- nitrogen concentration. No N re-translocation is attributed to other
- parts than `Grain`.
- ## Nitrogen stresses
- ### Phenology
- Nitrogen stress on phenology (via $f_{N,\,pheno}$ in Equation \@ref(eq:CumThermalTime))
- is determined by the difference between organ nitrogen concentration
- and organ minimum and critical nitrogen concentration.
- \begin{equation}
- f_{N,\,pheno}=h_{N,\,pheno}\sum_{stem,\,leaf}\frac{C_{N}-C_{N,\,min}}{C_{N,\,crit}\times f_{c,\,N}-C_{N,\,min}} (\#eq:NitrogenStress)
- \end{equation}
- where $C_{N}$ is the nitrogen concentration of `Stem` or `Leaf`
- parts; $h_{N,\,pheno}$ is multiple for nitrogen deficit effect on
- phenology which is specified by `N_fact_pheno` in the wheat.xml
- and default value is 100; $C_{N,\,crit}$ and $C_{N,\,min}$ are the
- N concentration critic and minimal of the parts, respectively (Fig. \@ref(fig:wdNitrogenConcentration));
- and $f_{c,\,N}$ is a factor with a value of 1 (i.e. no impact) for
- Stem, and is depending on CO\textsubscript{2} for `Leaf` (Fig. \@ref(fig:wbCO2CritLeaf)).
- The nitrogen stress on phenology is used in the calculation of the
- `adjusted` thermal time (Equation \@ref(eq:CumThermalTime)).
- However, In the current version of APSIM-Wheat module, the default
- parameters are applied for no nitrogen water stress for phenology.
- ### Biomass accumulation
- Nitrogen stress on biomass accumulation (via $f_{N,\,photo}$ in Equation \@ref(eq:StressFactor4Photosynthesis))
- is determined by the difference between leaf nitrogen concentration
- and leaf minimum and critical nitrogen concentration.
- \begin{equation}
- f_{N,\,photo}=h_{N,\,photo}\sum_{leaf}\frac{C_{N}-C_{N,\,min}}{C_{N,\,crit}\times f_{c,\,N}-C_{N,\,min}} (\#eq:NStressPhoto)
- \end{equation}
- where $C_{N}$ is the nitrogen concentration of `Leaf` parts;
- $h_{N,\,photo}$ is multiplier for nitrogen deficit effect on photosynthesis
- which is specified by `N_fact_photo` in the wheat.xml and
- default value is 1.5; $C_{N,\,crit}$ and $C_{N,\,min}$ are the N
- concentration critic and minimal of the parts, respectively (Fig. \@ref(fig:wdNitrogenConcentration));
- and $f_{c,\,N}$ is a factor with a value of 1 (i.e. no impact) for
- Stem, and is depending on CO\textsubscript{2} for `Leaf` (Fig. \@ref(fig:wbCO2CritLeaf)).
- The nitrogen stress on biomass accumulation affects the radiation-limited
- biomass accumulation ($\Delta Q_{r}$, Equation \@ref(eq:actualBiomassProduction)).
- ### Leaf appearance and expansion (i.e. leaf number and LAI)
- Nitrogen stress on leaf appearance and expansion (via $f_{N,\,expan}$
- in Equation \@ref(eq:LeafExpansionStress)) is determined by the difference
- between leaf nitrogen concentration and leaf minimum and critical
- nitrogen concentration.
- \begin{equation}
- f_{N,\,expan}=h_{N,\,expan}\sum_{leaf}\frac{C_{N}-C_{N,\,min}}{C_{N,\,crit}\times f_{c,\,N}-C_{N,\,min}} (\#eq:NStressLeafExpansion)
- \end{equation}
- where $C_{N}$ is the nitrogen concentration of `Leaf` parts;
- $h_{N,\,expan}$ is multiplier for nitrogen deficit effect on expansion
- which is specified by `N_fact_expansion` in the wheat.xml
- (default value 1); $C_{N,\,crit}$ and $C_{N,\,min}$ are the N concentration
- critic and minimal of the parts, respectively (Fig. \@ref(fig:wdNitrogenConcentration));
- and $f_{c,\,N}$ is a factor with a value of 1 (i.e. no impact) for
- Stem, and is depending on CO\textsubscript{2} for `Leaf` (Fig. \@ref(fig:wbCO2CritLeaf)).
- The nitrogen stress on leaf appearance and expansion affects the potential
- leaf number ($N_{d,\,pot}$; Equation \@ref(eq:PotentialNodeNumberDaily))
- and the stressed leaf area index ($\Delta\text{LAI}_{d,\,s}$, Equation \@ref(eq:StressLeafArea)).
- ### Grain filling (biomass and nitrogen demand of grain)
- Nitrogen stress on grain filling affects the biomass demand of `Grain`
- (via $f_{N,\,grain}$ in Equation \@ref(eq:MealDemand)) and the N demand
- of `Grain` (Equation \@ref(eq:NitrogenDemand)).
- The nitrogen factor $f_{N,\,grain}$ (that impacts N demand of grain)
- is determined by the difference between organ nitrogen concentration
- and organ minimum and critical nitrogen concentration as follows:.
- \begin{equation}
- f_{N,\,grain}=\frac{h_{N,\ poten}}{h_{N,\ min}}h_{N,\,grain}\sum_{stem,\,leaf}\frac{C_{N}-C_{N,\,min}}{C_{N,\,crit}\times f_{c,\,N}-C_{N,\,min}}\qquad(0\leq f_{N,\,fill}\leq1) (\#eq:NStressFilling)
- \end{equation}
- where $h_{N,\ poten}$ is the potential rate of grain filling which
- is specified by `potential_grain_n_filling_rate` in wheat.xml
- and has a default value of 0.000055 g grain\textsuperscript{-1} d\textsuperscript{-1};
- $h_{N,\ min}$ is the minimum rate of grain filling which is specified
- by `minimum_grain_n_filling_rate` in wheat.xml and has
- a default value of 0.000015 g grain\textsuperscript{-1} d\textsuperscript{-1};
- $h_{N,\,grain}$ is a multiplier for nitrogen deficit effect on grain,
- which is specified by `n_fact_grain` in wheat.xml and has
- a default value of 1; $C_{N}$ is the nitrogen concentration of `Stem`
- or `Leaf` parts; $C_{N,\,crit}$ and $C_{N,\,min}$ are critical
- and minimum nitrogen concentration, respectively, for `Stem`
- and `Leaf` parts. $C_{N,\,crit}$ and $C_{N,\,min}$ are functions
- of growth stage and nitrogen concentration which is defined by parameters
- `x_stage_code`, `y_n_conc_min_leaf`, `y_n_conc_crit_leaf`,
- `y_n_conc_min_stem`, `y_n_conc_crit_stem` in
- wheat.xml and linearly interpolated by APSIM (Fig. \@ref(fig:wdNitrogenConcentration));
- and $f_{c,\,N}$ is a factor with a value of 1 (i.e. no impact) for
- Stem, and is depending on CO\textsubscript{2} for `Leaf` (Fig. \@ref(fig:wbCO2CritLeaf)).
|