10-senesence.Rmd 6.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203
  1. # Senescence
  2. ## Leaf number senescence
  3. The leaf senescence phase begins 40\% between floral initiation and
  4. end of juvenile, and ends at harvest ripe (Fig. \@ref(fig:PhenologWheatModule)),
  5. at which stage, all green leaves are dead. During leaf senescence
  6. phase (Fig. \@ref(fig:PhenologWheatModule)), leaf number senescence
  7. is calculated by daily thermal time ($\Delta TT$, Equation \@ref(eq:thermaltime))
  8. as follows:
  9. \begin{equation}
  10. \Delta N_{d,\,sen}=\Delta TT\times\frac{f_{sen,\,l}\times N_{d}}{r_{sen,\,l}}
  11. \end{equation}
  12. where $N_{d}$ is the total leaf number; $f_{sen,\,l}$ is the fraction
  13. of the total leaf number senescing per main stem node and specified
  14. by `fr_lf_sen_rate` in wheat.xml (default value 0.035);
  15. $r_{sen,\,l}$ is the rate of node senescence on main stem and specified
  16. by `node_sen_rate` in wheat.xml (default value 60.0 $^{\circ}$Cd
  17. node\textsuperscript{-1}).
  18. ## Leaf area senescence
  19. There are five causes of leaf senescence: age ($\text{\ensuremath{\Delta}LAI}_{sen,\,age}$),
  20. water stress ($\text{\ensuremath{\Delta}LAI}_{sen,\,sw}$), light
  21. intensity ($\text{\ensuremath{\Delta}LAI}_{sen,\,light}$), frost
  22. ($\text{\ensuremath{\Delta}LAI}_{sen,\,frost}$) and heat ($\text{\ensuremath{\Delta}LAI}_{sen,\,heat}$).
  23. The maximum of these causes is the day's total leaf area index senescence.
  24. \begin{equation}
  25. \text{\ensuremath{\Delta}LAI}_{sen}=\max(\text{\ensuremath{\Delta}LAI}_{sen,\,age},\;\text{\ensuremath{\Delta}LAI}_{sen,\,sw},\;\Delta\text{LAI}_{sen,\,light},\;\text{\ensuremath{\Delta}LAI}_{sen,\,frost},\;\text{\ensuremath{\Delta}LAI}_{sen,\,heat})
  26. \end{equation}
  27. Leaf area senescence caused by age corresponds to the leaf area of
  28. the number of leaves senesced ($\Delta N_{d,\,sen}$) from the lowest
  29. leaf position.
  30. Leaf area senescence caused by soil water ($\text{\ensuremath{\Delta}LAI}_{sen,\,sw}$)
  31. is calculated as follows.
  32. \begin{equation}
  33. \text{\ensuremath{\Delta}LAI}_{sen,\,sw}=k_{sen,\,sw}\times(1-f_{sw,\,photo})\times\text{LAI}
  34. \end{equation}
  35. where $k_{sen,\,sw}$ is the slope of the linear equation relating
  36. to soil water stress to leaf senescence rate and is specified by `sen_rate_water`
  37. in wheat.xml (default value 0.10); $f_{sw,\,photo}$ is soil water
  38. stress for photosynthesis (Equation \@ref(eq:swstressphoto)); LAI is the
  39. leaf area index.
  40. Leaf area senescence caused by light intensity ($\text{\ensuremath{\Delta}LAI}_{sen,\,light}$)
  41. is calculated as follows:
  42. \begin{equation}
  43. \text{\ensuremath{\Delta}LAI}_{sen,\,light}=k_{sen,\,light}\times(\text{LAI}-\text{LAI}_{c,\,light})\times\text{LAI}\quad\text{LAI}>\text{LAI}_{c,\,light} (\#eq:SensLight)
  44. \end{equation}
  45. where $k_{sen,\,light}$ is sensitivity of leaf area senescence to
  46. shading and is specified by `sen_light_slope` in wheat.xml
  47. (default value 0.002); $\text{LAI}_{c,\,light}$ is the critical LAI
  48. when shading is starting to cause leaf area senescence and is specified
  49. by `lai_sen_light` in wheat.xml (default value 7).
  50. The leaf area senescence caused by frost is a ratio of LAI.
  51. \begin{equation}
  52. \text{\ensuremath{\Delta}LAI}_{sen,\,frost}=k_{sen,\,frost}\text{\ensuremath{\times}LAI} (\#eq:SensFrost)
  53. \end{equation}
  54. where $k_{sen,\,frost}$ is a function of daily minimum temperature
  55. and is defined by parameters `x_temp_senescence` and `y_senescence_fac`
  56. in wheat.xml, which are linearly interpolated by APSIM. The default
  57. value of $k_{sen,\,frost}$ is zero, i.e. there is no frost stress
  58. in leaf area in the current APSIM-Wheat module.
  59. Senescence by heat calculation has been added in APSIM 7.5. The leaf
  60. area senescence by heat is a ratio of LAI \citep{asseng2011theimpact}.
  61. \begin{equation}
  62. \text{\ensuremath{\Delta}LAI}_{sen,\,heat}=k_{sen,\,heat}\times\text{LAI} (\#eq:SensHeat)
  63. \end{equation}
  64. where $k_{sen,\,heat}$ is a function of daily maximum temperature
  65. which is defined by parameters `x_maxt_senescence` and `y_heatsenescence_fac`
  66. in wheat.xml which are linearly interpolated by APSIM.
  67. ```{r wdHeatSenescence,fig.cap='Fraction of senescence of leaf area index ($k_{sen,\\,heat}$) in response to maximum temperature.' }
  68. p <- wdVisXY(wheat_xml,
  69. "x_maxt_senescence", "y_heatsenescence_fac",
  70. xlab = expression(paste("Maximum temperature", ~"("*degree*"C)")),
  71. ylab = "Senescence fraction of LAI")
  72. print(p)
  73. ```
  74. The total leaf area of plant must be more than the minimum plant area
  75. (`min_tpla`), which has default value 5 mm$^{\text{2}}$ plant$^{\text{-1}}$.
  76. When some leaves are senesced, only a small amount of nitrogen is
  77. retained in the senesced leaf, the rest is made available for re-translocation
  78. included into the `Stem` N pool ( Section @ref(NitrogenPartitioningAndRetranslocation)).
  79. The concentration of nitrogen in senesced material is specified in
  80. wheat.xml.
  81. ## Biomass senescence
  82. Leaf biomass senescence $\Delta Q_{sl}$ is the ratio of leaf area
  83. senescence ($\text{\ensuremath{\Delta}LAI}_{sen}$) with total the
  84. green LAI at the time considered (LAI).
  85. \begin{equation}
  86. \Delta Q_{sl}=\Delta Q_{l}\frac{\text{\ensuremath{\text{\ensuremath{\Delta}LAI}_{sen}}}}{\text{LAI}}
  87. \end{equation}
  88. where $\Delta Q_{l}$ is the daily increase of leaf biomass.
  89. ## Root senescence
  90. A rate of 0.5\% of root biomass and root length is senesced each day
  91. and detaches immediately being sent to the soil nitrogen module and
  92. distributed as fresh organic matter in the profile.
  93. \begin{equation}
  94. \Delta Q_{sen,\,root}=\Delta Q_{root}\times f_{sen,\,root}
  95. \end{equation}
  96. where $\Delta Q_{sen,\,root}$ is the daily `Root` senesced
  97. biomass, and $f_{sen,\,root}$ is the fraction of senesced root biomass,
  98. which is defined in `x_dm_sen_frac_root` and `y_dm_sen_frac_root`
  99. in wheat.xml (Fig. \@ref(fig:wdRootSens))
  100. ```{r wdRootSens,fig.cap='Fraction of senescence of root biomass.' }
  101. p <- wdVisXY(wheat_xml,
  102. "x_dm_sen_frac_root", "y_dm_sen_frac_root",
  103. xlab = 'Fraction of material senescence',
  104. ylab = "Senescence fraction of Root biomass")
  105. print(p)
  106. ```
  107. \begin{equation}
  108. \Delta L_{sen,\,root}=\Delta Q_{sen,\,root}\times\text{SRL}
  109. \end{equation}
  110. where $\Delta L_{sen,\,root}$ is the daily root length senescence,
  111. and SRL is the specific root length.
  112. Root senescence occurs in each of the soil layers where roots are
  113. present, as a proportion of the total root length.
  114. \begin{equation}
  115. \Delta L_{sen,\,root}(i)=\Delta L_{sen,\,root}\times\frac{L_{r}(i)}{\sum_{j=1}^{i}L_{r}(j)}
  116. \end{equation}
  117. where $L_{sen,\,root}(i)$ is the root length senescence in soil layer
  118. $i$, $L_{r}(i)$ is root length in layer $i$, and $\sum_{j=1}^{i}L_{r}(j)$is
  119. the total root length for all the layers where root are present.