09-root-development.Rmd 7.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230
  1. # Root growth and distribution
  2. ## Root depth growth
  3. Between germination and start of grain filling (Fig. \@ref(fig:PhenologWheatModule)),
  4. the increase in root depth ($\Delta D_{r}$) is a daily rate multiplied
  5. by a number of factors. Daily root depth growth ($\Delta D_{r}$)
  6. is calculated by root depth growth rate ($R_{r}$), temperature factor
  7. ($f_{rt}$), soil water factor ($f_{rw}$), and soil water available
  8. factor ($f_{rwa}$) and root exploration factor ($\text{XF}(i)$).
  9. \begin{equation}
  10. \Delta D_{r}=R_{r}\times f_{rt}\times\min(f_{rw},\;f_{rwa})\text{\ensuremath{\times}XF}(i) (\#eq:rootDepthGrowth)
  11. \end{equation}
  12. where $i$ is the soil layer number in which root tips are growing.
  13. Root depth growth rate is a function of growth stage, which is defined
  14. by parameters `stage_code_list` and `root_depth_rate`
  15. in the wheat.xml and is linearly interpolated by APSIM (Fig. \@ref(fig:wdRootGrowthRate)).
  16. ```{r wdRootGrowthRate,fig.cap='Relationship between root depth growth rate ($R_{r}$) and growth stages.' }
  17. p <- wdVisXY(wheat_xml,
  18. "stage_code_list", "root_depth_rate",
  19. xlab = "Stage codes",
  20. ylab = "Root depth growth rate (mm/d)")
  21. print(p)
  22. ```
  23. The temperature factor ($f_{rt}$) is calculated by daily mean temperature.
  24. \begin{equation}
  25. f_{rt}=h_{rt}(\frac{T_{max}+T_{min}}{2}) (\#eq:RootGrowthTemperature)
  26. \end{equation}
  27. where $h_{rt}$ is a function of factor of temperature on root length
  28. and daily mean temperature and is defined by parameters `x_temp_root_advance`
  29. and `y_rel_root_advance` in the wheat.xml which is linearly
  30. interpolated by APSIM (Fig. \@ref(fig:wdTempRootFactor)).
  31. ```{r wdTempRootFactor,fig.cap='Relationship ($h_{rt}$) between temperature factor on root length and daily mean temperature.' }
  32. p <- wdVisXY(wheat_xml,
  33. "x_temp_root_advance", "y_rel_root_advance",
  34. xlab = expression(paste("Mean daily temperature", ~"("*degree*"C)")),
  35. ylab = "Temperature factor on root length")
  36. print(p)
  37. ```
  38. The soil water factor ($f_{rw}$) is calculated by soil water stresses
  39. of photosynthesis ($f_{w,\,photo}$, Equation \@ref(eq:swstressphoto)).
  40. \begin{equation}
  41. f_{rw}=h_{rw}(f_{w,\,photo})
  42. \end{equation}
  43. where $h_{rw}$ is a function of soil-water factor affecting root
  44. depth growth in response to soil water stress for photosynthesis.
  45. This function is defined by parameters `x_ws_root` and `y_ws_root_fac`,
  46. which are linearly interpolated by APSIM. The default value of $f_{rw}$
  47. is 1, i.e. there is no soil water stress on root depth growth in current
  48. APSIM-Wheat.
  49. The soil water available factor ($f_{rwa}$) is calculated by fraction
  50. of available soil water.
  51. \begin{equation}
  52. f_{rwa}=h_{rwa}(\text{FASW}) (\#eq:Soilwateravailablefactor)
  53. \end{equation}
  54. where $h_{rwa}$ is a function of the fraction of available soil water
  55. (FASW) is defined in wheat.xml by parameters `x_sw_ratio`
  56. and `y_sw_fac_root` which is linearly interpolated by APSIM
  57. (Fig. \@ref(fig:wdWaterAvaiOnRoot)).
  58. ```{r wdWaterAvaiOnRoot,fig.cap='Available soil water fraction ($f_{rwa}$) in response to the fraction of available soil water (FASW).' }
  59. p <- wdVisXY(wheat_xml,
  60. "x_sw_ratio", "y_sw_fac_root",
  61. xlab = "Fraction of available soil water",
  62. ylab = "Stress factor for root depth growth")
  63. print(p)
  64. ```
  65. The fraction of available soil water (FASW) is calculated by a fraction
  66. of root dpeth in soil layer $i$ ($D_{r}(i)$) and depth of soil layer
  67. $i$ ($D_{s}(i)$), and FASW at layer $i+1$ and $i$.
  68. \begin{equation}
  69. \text{FASW}=\frac{D_{r}(i)}{D_{s}(i)}\text{FASW}(i+1)+(1-\frac{D_{r}(i)}{D_{s}(i)})\text{FASW}(i)
  70. \end{equation}
  71. where $\text{FASW}(i)$ is the fraction of available soil water in
  72. soil layer $i$. $D_{r}(i)$ is the root depth within the deepest
  73. soil layer ($i$) where roots are present , $D_{s}(i)$ is the thickness
  74. of this layer $i$, and
  75. \begin{equation}
  76. \text{FASW}(i)=\frac{\text{SW}(i)-\text{LL}(i)}{\text{DUL}(i)-\text{LL}(i)}
  77. \end{equation}
  78. where $\text{SW}(i)$ is the soil water content at layer $i$ (mm),
  79. $\text{LL}(i)$ is the lower limit of plant-extractable soil water
  80. in layer $i$ (mm), $\text{DUL}(i)$ is drained upper limit soil water
  81. content in soil layer $i$ (mm). $\text{XF}(i)$, $\text{SW}(i)$,
  82. $\text{LL}(i)$ and $\text{DUL}(i)$ are specified at the soil module
  83. of APSIM simulation files.
  84. Finally, Equation \@ref(eq:rootDepthGrowth) is reduced to this function.
  85. \begin{equation}
  86. \Delta D_{r}=R_{r}\times f_{rt}\times f_{rwa}\text{\ensuremath{\times}XF}(i) (\#eq:rootDepthGrowth-1)
  87. \end{equation}
  88. Overall, root depth is constrained by the soil profile depth. The
  89. optimum root expansion rate is 30 mm d\textsuperscript{-1} (Fig. \@ref(fig:wdRootGrowthRate)).
  90. This can be limited by supra- or sub-optimal mean air temperatures
  91. (Fig. \@ref(fig:wdTempRootFactor)). Dry soil can slow root depth progression
  92. if the soil water content is less than 25\% of the extractable soil
  93. water (drained upper limit - lower limit) in the layers they are about
  94. to reach (Fig. \@ref(fig:wdWaterAvaiOnRoot)). The increase of root
  95. depth through a layer can also be reduced by knowing soil constraints
  96. (soil compression) through the use of the 0-1 parameter XF, which
  97. is input for each soil layer. Root depth is used by APSIM to calculate
  98. soil available water (e.g \autoref{sec:Crop-Water-Relations}).
  99. ## Root length
  100. Daily root length growth is calculated by daily growth of `Root`
  101. biomass ($\Delta Q_{root}$, Equation \@ref(eq:RootBiomass)) and specific
  102. root length ($\text{SRL}$, defined by `specific_root_length`
  103. in wheat.xml with a default value of 105000 mm g\textsuperscript{-1}).
  104. \begin{equation}
  105. \Delta L_{r}=\Delta Q_{root}\times\text{SRL}
  106. \end{equation}
  107. The daily root length growth ($\Delta L_{r}$) is distributed to each
  108. soil layer $i$ according to root depth and soil water availability
  109. in soil layer $i$.
  110. \begin{equation}
  111. \Delta D_{r}(i)=\frac{f_{rl}(i)}{\sum_{j=1}^{N}f_{rl}(j)}
  112. \end{equation}
  113. where $f_{rl}(i)$ is a factor of root length growth in soil layer
  114. $i$.
  115. \begin{equation}
  116. f_{rl}(i)=f_{rwa}\times f_{b}(i)\text{\ensuremath{\times}XF}(i)\times\frac{D_{s}(i)}{D_{r}}\,
  117. \end{equation}
  118. where $\Delta L_{r}(i)$ is the daily root length growth for soil
  119. layer $i$, $D_{s}(i)$ is the depth of the soil layer $i$, $D_{r}$
  120. is total root depth from the previous day, $\text{XF}(i)$ is root
  121. exploration factor in soil layer $i$, $f_{rwa}$ is soil water available
  122. factor (Equation \@ref(eq:Soilwateravailablefactor)), \textbf{$f_{b}(i)$
  123. }is branch factor at layer $i$.
  124. \begin{equation}
  125. f_{b}(i)=h_{b}(\frac{L_{r}(i)}{D_{p}D_{s}(i)})
  126. \end{equation}
  127. where $L_{r}(i)$ is the root length in soil layer $i$, $D_{p}$
  128. is plant population, $h_{b}$ is a function for branch factor that
  129. is defined by parameters `x_plant_rld` and `y_rel_root_rate`
  130. in the wheat.xml and linearly interpolated by APSIM (Fig. \@ref(fig:wdRootBranching)).
  131. ```{r wdRootBranching,fig.cap='Root branching factor in response to root branching.' }
  132. p <- wdVisXY(wheat_xml,
  133. "x_plant_rld", "y_rel_root_rate",
  134. xlab = "Root branching (mm/mm3/plant)",
  135. ylab = "Root branching factor")
  136. print(p)
  137. ```
  138. Root length has no effect on other traits in the current version of
  139. APSIM-Wheat. It is just used by the root senescence routine.