# Senescence ## Leaf number senescence The leaf senescence phase begins 40\% between floral initiation and end of juvenile, and ends at harvest ripe (Fig. \@ref(fig:PhenologWheatModule)), at which stage, all green leaves are dead. During leaf senescence phase (Fig. \@ref(fig:PhenologWheatModule)), leaf number senescence is calculated by daily thermal time ($\Delta TT$, Equation \@ref(eq:thermaltime)) as follows: \begin{equation} \Delta N_{d,\,sen}=\Delta TT\times\frac{f_{sen,\,l}\times N_{d}}{r_{sen,\,l}} \end{equation} where $N_{d}$ is the total leaf number; $f_{sen,\,l}$ is the fraction of the total leaf number senescing per main stem node and specified by `fr_lf_sen_rate` in wheat.xml (default value 0.035); $r_{sen,\,l}$ is the rate of node senescence on main stem and specified by `node_sen_rate` in wheat.xml (default value 60.0 $^{\circ}$Cd node\textsuperscript{-1}). ## Leaf area senescence There are five causes of leaf senescence: age ($\text{\ensuremath{\Delta}LAI}_{sen,\,age}$), water stress ($\text{\ensuremath{\Delta}LAI}_{sen,\,sw}$), light intensity ($\text{\ensuremath{\Delta}LAI}_{sen,\,light}$), frost ($\text{\ensuremath{\Delta}LAI}_{sen,\,frost}$) and heat ($\text{\ensuremath{\Delta}LAI}_{sen,\,heat}$). The maximum of these causes is the day's total leaf area index senescence. \begin{equation} \text{\ensuremath{\Delta}LAI}_{sen}=\max(\text{\ensuremath{\Delta}LAI}_{sen,\,age},\;\text{\ensuremath{\Delta}LAI}_{sen,\,sw},\;\Delta\text{LAI}_{sen,\,light},\;\text{\ensuremath{\Delta}LAI}_{sen,\,frost},\;\text{\ensuremath{\Delta}LAI}_{sen,\,heat}) \end{equation} Leaf area senescence caused by age corresponds to the leaf area of the number of leaves senesced ($\Delta N_{d,\,sen}$) from the lowest leaf position. Leaf area senescence caused by soil water ($\text{\ensuremath{\Delta}LAI}_{sen,\,sw}$) is calculated as follows. \begin{equation} \text{\ensuremath{\Delta}LAI}_{sen,\,sw}=k_{sen,\,sw}\times(1-f_{sw,\,photo})\times\text{LAI} \end{equation} where $k_{sen,\,sw}$ is the slope of the linear equation relating to soil water stress to leaf senescence rate and is specified by `sen_rate_water` in wheat.xml (default value 0.10); $f_{sw,\,photo}$ is soil water stress for photosynthesis (Equation \@ref(eq:swstressphoto)); LAI is the leaf area index. Leaf area senescence caused by light intensity ($\text{\ensuremath{\Delta}LAI}_{sen,\,light}$) is calculated as follows: \begin{equation} \text{\ensuremath{\Delta}LAI}_{sen,\,light}=k_{sen,\,light}\times(\text{LAI}-\text{LAI}_{c,\,light})\times\text{LAI}\quad\text{LAI}>\text{LAI}_{c,\,light} (\#eq:SensLight) \end{equation} where $k_{sen,\,light}$ is sensitivity of leaf area senescence to shading and is specified by `sen_light_slope` in wheat.xml (default value 0.002); $\text{LAI}_{c,\,light}$ is the critical LAI when shading is starting to cause leaf area senescence and is specified by `lai_sen_light` in wheat.xml (default value 7). The leaf area senescence caused by frost is a ratio of LAI. \begin{equation} \text{\ensuremath{\Delta}LAI}_{sen,\,frost}=k_{sen,\,frost}\text{\ensuremath{\times}LAI} (\#eq:SensFrost) \end{equation} where $k_{sen,\,frost}$ is a function of daily minimum temperature and is defined by parameters `x_temp_senescence` and `y_senescence_fac` in wheat.xml, which are linearly interpolated by APSIM. The default value of $k_{sen,\,frost}$ is zero, i.e. there is no frost stress in leaf area in the current APSIM-Wheat module. Senescence by heat calculation has been added in APSIM 7.5. The leaf area senescence by heat is a ratio of LAI \citep{asseng2011theimpact}. \begin{equation} \text{\ensuremath{\Delta}LAI}_{sen,\,heat}=k_{sen,\,heat}\times\text{LAI} (\#eq:SensHeat) \end{equation} where $k_{sen,\,heat}$ is a function of daily maximum temperature which is defined by parameters `x_maxt_senescence` and `y_heatsenescence_fac` in wheat.xml which are linearly interpolated by APSIM. ```{r wdHeatSenescence,fig.cap='Fraction of senescence of leaf area index ($k_{sen,\\,heat}$) in response to maximum temperature.' } p <- wdVisXY(wheat_xml, "x_maxt_senescence", "y_heatsenescence_fac", xlab = expression(paste("Maximum temperature", ~"("*degree*"C)")), ylab = "Senescence fraction of LAI") print(p) ``` The total leaf area of plant must be more than the minimum plant area (`min_tpla`), which has default value 5 mm$^{\text{2}}$ plant$^{\text{-1}}$. When some leaves are senesced, only a small amount of nitrogen is retained in the senesced leaf, the rest is made available for re-translocation included into the `Stem` N pool ( Section @ref(NitrogenPartitioningAndRetranslocation)). The concentration of nitrogen in senesced material is specified in wheat.xml. ## Biomass senescence Leaf biomass senescence $\Delta Q_{sl}$ is the ratio of leaf area senescence ($\text{\ensuremath{\Delta}LAI}_{sen}$) with total the green LAI at the time considered (LAI). \begin{equation} \Delta Q_{sl}=\Delta Q_{l}\frac{\text{\ensuremath{\text{\ensuremath{\Delta}LAI}_{sen}}}}{\text{LAI}} \end{equation} where $\Delta Q_{l}$ is the daily increase of leaf biomass. ## Root senescence A rate of 0.5\% of root biomass and root length is senesced each day and detaches immediately being sent to the soil nitrogen module and distributed as fresh organic matter in the profile. \begin{equation} \Delta Q_{sen,\,root}=\Delta Q_{root}\times f_{sen,\,root} \end{equation} where $\Delta Q_{sen,\,root}$ is the daily `Root` senesced biomass, and $f_{sen,\,root}$ is the fraction of senesced root biomass, which is defined in `x_dm_sen_frac_root` and `y_dm_sen_frac_root` in wheat.xml (Fig. \@ref(fig:wdRootSens)) ```{r wdRootSens,fig.cap='Fraction of senescence of root biomass.' } p <- wdVisXY(wheat_xml, "x_dm_sen_frac_root", "y_dm_sen_frac_root", xlab = 'Fraction of material senescence', ylab = "Senescence fraction of Root biomass") print(p) ``` \begin{equation} \Delta L_{sen,\,root}=\Delta Q_{sen,\,root}\times\text{SRL} \end{equation} where $\Delta L_{sen,\,root}$ is the daily root length senescence, and SRL is the specific root length. Root senescence occurs in each of the soil layers where roots are present, as a proportion of the total root length. \begin{equation} \Delta L_{sen,\,root}(i)=\Delta L_{sen,\,root}\times\frac{L_{r}(i)}{\sum_{j=1}^{i}L_{r}(j)} \end{equation} where $L_{sen,\,root}(i)$ is the root length senescence in soil layer $i$, $L_{r}(i)$ is root length in layer $i$, and $\sum_{j=1}^{i}L_{r}(j)$is the total root length for all the layers where root are present.