123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868 |
- /*- genpng
- *
- * COPYRIGHT: Written by John Cunningham Bowler, 2015.
- * To the extent possible under law, the author has waived all copyright and
- * related or neighboring rights to this work. This work is published from:
- * United States.
- *
- * Generate a PNG with an alpha channel, correctly.
- *
- * This is a test case generator; the resultant PNG files are only of interest
- * to those of us who care about whether the edges of circles are green, red,
- * or yellow.
- *
- * The program generates an RGB+Alpha PNG of a given size containing the given
- * shapes on a transparent background:
- *
- * genpng width height { shape }
- * shape ::= color width shape x1 y1 x2 y2
- *
- * 'color' is:
- *
- * black white red green yellow blue brown purple pink orange gray cyan
- *
- * The point is to have colors that are linguistically meaningful plus that old
- * bugbear of the department store dress murders, Cyan, the only color we argue
- * about.
- *
- * 'shape' is:
- *
- * circle: an ellipse
- * square: a rectangle
- * line: a straight line
- *
- * Each shape is followed by four numbers, these are two points in the output
- * coordinate space (as real numbers) which describe the circle, square, or
- * line. The shape is filled if it is preceded by 'filled' (not valid for
- * 'line') or is drawn with a line, in which case the width of the line must
- * precede the shape.
- *
- * The whole set of information can be repeated as many times as desired:
- *
- * shape ::= color width shape x1 y1 x2 y2
- *
- * color ::= black|white|red|green|yellow|blue
- * color ::= brown|purple|pink|orange|gray|cyan
- * width ::= filled
- * width ::= <number>
- * shape ::= circle|square|line
- * x1 ::= <number>
- * x2 ::= <number>
- * y1 ::= <number>
- * y2 ::= <number>
- *
- * The output PNG is generated by down-sampling a 4x supersampled image using
- * a bi-cubic filter. The bi-cubic has a 2 (output) pixel width, so an 8x8
- * array of super-sampled points contribute to each output pixel. The value of
- * a super-sampled point is found using an unfiltered, aliased, infinite
- * precision image: Each shape from the last to the first is checked to see if
- * the point is in the drawn area and, if it is, the color of the point is the
- * color of the shape and the alpha is 1, if not the previous shape is checked.
- *
- * This is an aliased algorithm because no filtering is done; a point is either
- * inside or outside each shape and 'close' points do not contribute to the
- * sample. The down-sampling is relied on to correct the error of not using
- * a filter.
- *
- * The line end-caps are 'flat'; they go through the points. The square line
- * joins are mitres; the outside of the lines are continued to the point of
- * intersection.
- */
- #include <stddef.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <math.h>
- /* Normally use <png.h> here to get the installed libpng, but this is done to
- * ensure the code picks up the local libpng implementation:
- */
- #include "../../png.h"
- #if defined(PNG_SIMPLIFIED_WRITE_SUPPORTED) && defined(PNG_STDIO_SUPPORTED)
- static const struct color
- {
- const char *name;
- double red;
- double green;
- double blue;
- } colors[] =
- /* color ::= black|white|red|green|yellow|blue
- * color ::= brown|purple|pink|orange|gray|cyan
- */
- {
- { "black", 0, 0, 0 },
- { "white", 1, 1, 1 },
- { "red", 1, 0, 0 },
- { "green", 0, 1, 0 },
- { "yellow", 1, 1, 0 },
- { "blue", 0, 0, 1 },
- { "brown", .5, .125, 0 },
- { "purple", 1, 0, 1 },
- { "pink", 1, .5, .5 },
- { "orange", 1, .5, 0 },
- { "gray", 0, .5, .5 },
- { "cyan", 0, 1, 1 }
- };
- #define color_count ((sizeof colors)/(sizeof colors[0]))
- static const struct color *
- color_of(const char *arg)
- {
- int icolor = color_count;
- while (--icolor >= 0)
- {
- if (strcmp(colors[icolor].name, arg) == 0)
- return colors+icolor;
- }
- fprintf(stderr, "genpng: invalid color %s\n", arg);
- exit(1);
- }
- static double
- width_of(const char *arg)
- {
- if (strcmp(arg, "filled") == 0)
- return 0;
- else
- {
- char *ep = NULL;
- double w = strtod(arg, &ep);
- if (ep != NULL && *ep == 0 && w > 0)
- return w;
- }
- fprintf(stderr, "genpng: invalid line width %s\n", arg);
- exit(1);
- }
- static double
- coordinate_of(const char *arg)
- {
- char *ep = NULL;
- double w = strtod(arg, &ep);
- if (ep != NULL && *ep == 0)
- return w;
- fprintf(stderr, "genpng: invalid coordinate value %s\n", arg);
- exit(1);
- }
- struct arg; /* forward declaration */
- typedef int (*shape_fn_ptr)(const struct arg *arg, double x, double y);
- /* A function to determine if (x,y) is inside the shape.
- *
- * There are two implementations:
- *
- * inside_fn: returns true if the point is inside
- * check_fn: returns;
- * -1: the point is outside the shape by more than the filter width (2)
- * 0: the point may be inside the shape
- * +1: the point is inside the shape by more than the filter width
- */
- #define OUTSIDE (-1)
- #define INSIDE (1)
- struct arg
- {
- const struct color *color;
- shape_fn_ptr inside_fn;
- shape_fn_ptr check_fn;
- double width; /* line width, 0 for 'filled' */
- double x1, y1, x2, y2;
- };
- /* IMPLEMENTATION NOTE:
- *
- * We want the contribution of each shape to the sample corresponding to each
- * pixel. This could be obtained by super sampling the image to infinite
- * dimensions, finding each point within the shape and assigning that a value
- * '1' while leaving every point outside the shape with value '0' then
- * downsampling to the image size with sinc; computationally very expensive.
- *
- * Approximations are as follows:
- *
- * 1) If the pixel coordinate is within the shape assume the sample has the
- * shape color and is opaque, else assume there is no contribution from
- * the shape.
- *
- * This is the equivalent of aliased rendering or resampling an image with
- * a block filter. The maximum error in the calculated alpha (which will
- * always be 0 or 1) is 0.5.
- *
- * 2) If the shape is within a square of size 1x1 centered on the pixel assume
- * that the shape obscures an amount of the pixel equal to its area within
- * that square.
- *
- * This is the equivalent of 'pixel coverage' alpha calculation or resampling
- * an image with a bi-linear filter. The maximum error is over 0.2, but the
- * results are often acceptable.
- *
- * This can be approximated by applying (1) to a super-sampled image then
- * downsampling with a bi-linear filter. The error in the super-sampled
- * image is 0.5 per sample, but the resampling reduces this.
- *
- * 3) Use a better filter with a super-sampled image; in the limit this is the
- * sinc() approach.
- *
- * 4) Do the geometric calculation; a bivariate definite integral across the
- * shape, unfortunately this means evaluating Si(x), the integral of sinc(x),
- * which is still a lot of math.
- *
- * This code uses approach (3) with a bi-cubic filter and 8x super-sampling
- * and method (1) for the super-samples. This means that the sample is either
- * 0 or 1, depending on whether the sub-pixel is within or outside the shape.
- * The bi-cubic weights are also fixed and the 16 required weights are
- * pre-computed here (note that the 'scale' setting will need to be changed if
- * 'super' is increased).
- *
- * The code also calculates a sum to the edge of the filter. This is not
- * currently used by could be used to optimize the calculation.
- */
- #if 0 /* bc code */
- scale=10
- super=8
- define bicubic(x) {
- if (x <= 1) return (1.5*x - 2.5)*x*x + 1;
- if (x < 2) return (((2.5 - 0.5*x)*x - 4)*x + 2);
- return 0;
- }
- define sum(x) {
- auto s;
- s = 0;
- while (x < 2*super) {
- s = s + bicubic(x/super);
- x = x + 1;
- }
- return s;
- }
- define results(x) {
- auto b, s;
- b = bicubic(x/super);
- s = sum(x);
- print " /*", x, "*/ { ", b, ", ", s, " }";
- return 1;
- }
- x=0
- while (x<2*super) {
- x = x + results(x)
- if (x < 2*super) print ","
- print "\n"
- }
- quit
- #endif
- #define BICUBIC1(x) /* |x| <= 1 */ ((1.5*(x)* - 2.5)*(x)*(x) + 1)
- #define BICUBIC2(x) /* 1 < |x| < 2 */ (((2.5 - 0.5*(x))*(x) - 4)*(x) + 2)
- #define FILTER_WEIGHT 9 /* Twice the first sum below */
- #define FILTER_WIDTH 2 /* Actually half the width; -2..+2 */
- #define FILTER_STEPS 8 /* steps per filter unit */
- static const double
- bicubic[16][2] =
- {
- /* These numbers are exact; the weight for the filter is 1/9, but this
- * would make the numbers inexact, so it is not included here.
- */
- /* bicubic sum */
- /* 0*/ { 1.0000000000, 4.5000000000 },
- /* 1*/ { .9638671875, 3.5000000000 },
- /* 2*/ { .8671875000, 2.5361328125 },
- /* 3*/ { .7275390625, 1.6689453125 },
- /* 4*/ { .5625000000, .9414062500 },
- /* 5*/ { .3896484375, .3789062500 },
- /* 6*/ { .2265625000, -.0107421875 },
- /* 7*/ { .0908203125, -.2373046875 },
- /* 8*/ { 0, -.3281250000 },
- /* 9*/ { -.0478515625, -.3281250000 },
- /*10*/ { -.0703125000, -.2802734375 },
- /*11*/ { -.0732421875, -.2099609375 },
- /*12*/ { -.0625000000, -.1367187500 },
- /*13*/ { -.0439453125, -.0742187500 },
- /*14*/ { -.0234375000, -.0302734375 },
- /*15*/ { -.0068359375, -.0068359375 }
- };
- static double
- alpha_calc(const struct arg *arg, double x, double y)
- {
- /* For [x-2..x+2],[y-2,y+2] calculate the weighted bicubic given a function
- * which tells us whether a point is inside or outside the shape. First
- * check if we need to do this at all:
- */
- switch (arg->check_fn(arg, x, y))
- {
- case OUTSIDE:
- return 0; /* all samples outside the shape */
- case INSIDE:
- return 1; /* all samples inside the shape */
- default:
- {
- int dy;
- double alpha = 0;
- # define FILTER_D (FILTER_WIDTH*FILTER_STEPS-1)
- for (dy=-FILTER_D; dy<=FILTER_D; ++dy)
- {
- double wy = bicubic[abs(dy)][0];
- if (wy != 0)
- {
- double alphay = 0;
- int dx;
- for (dx=-FILTER_D; dx<=FILTER_D; ++dx)
- {
- double wx = bicubic[abs(dx)][0];
- if (wx != 0 && arg->inside_fn(arg, x+dx/16, y+dy/16))
- alphay += wx;
- }
- alpha += wy * alphay;
- }
- }
- /* This needs to be weighted for each dimension: */
- return alpha / (FILTER_WEIGHT*FILTER_WEIGHT);
- }
- }
- }
- /* These are the shape functions. */
- /* "square",
- * { inside_square_filled, check_square_filled },
- * { inside_square, check_square }
- */
- static int
- square_check(double x, double y, double x1, double y1, double x2, double y2)
- /* Is x,y inside the square (x1,y1)..(x2,y2)? */
- {
- /* Do a modified Cohen-Sutherland on one point, bit patterns that indicate
- * 'outside' are:
- *
- * x<x1 | x<y1 | x<x2 | x<y2
- * 0 x 0 x To the right
- * 1 x 1 x To the left
- * x 0 x 0 Below
- * x 1 x 1 Above
- *
- * So 'inside' is (x<x1) != (x<x2) && (y<y1) != (y<y2);
- */
- return ((x<x1) ^ (x<x2)) & ((y<y1) ^ (y<y2));
- }
- static int
- inside_square_filled(const struct arg *arg, double x, double y)
- {
- return square_check(x, y, arg->x1, arg->y1, arg->x2, arg->y2);
- }
- static int
- square_check_line(const struct arg *arg, double x, double y, double w)
- /* Check for a point being inside the boundaries implied by the given arg
- * and assuming a width 2*w each side of the boundaries. This returns the
- * 'check' INSIDE/OUTSIDE/0 result but note the semantics:
- *
- * +--------------+
- * | | OUTSIDE
- * | INSIDE |
- * | |
- * +--------------+
- *
- * And '0' means within the line boundaries.
- */
- {
- double cx = (arg->x1+arg->x2)/2;
- double wx = fabs(arg->x1-arg->x2)/2;
- double cy = (arg->y1+arg->y2)/2;
- double wy = fabs(arg->y1-arg->y2)/2;
- if (square_check(x, y, cx-wx-w, cy-wy-w, cx+wx+w, cy+wy+w))
- {
- /* Inside, but maybe too far; check for the redundant case where
- * the lines overlap:
- */
- wx -= w;
- wy -= w;
- if (wx > 0 && wy > 0 && square_check(x, y, cx-wx, cy-wy, cx+wx, cy+wy))
- return INSIDE; /* between (inside) the boundary lines. */
- return 0; /* inside the lines themselves. */
- }
- return OUTSIDE; /* outside the boundary lines. */
- }
- static int
- check_square_filled(const struct arg *arg, double x, double y)
- {
- /* The filter extends +/-FILTER_WIDTH each side of each output point, so
- * the check has to expand and contract the square by that amount; '0'
- * means close enough to the edge of the square that the bicubic filter has
- * to be run, OUTSIDE means alpha==0, INSIDE means alpha==1.
- */
- return square_check_line(arg, x, y, FILTER_WIDTH);
- }
- static int
- inside_square(const struct arg *arg, double x, double y)
- {
- /* Return true if within the drawn lines, else false, no need to distinguish
- * INSIDE vs OUTSIDE here:
- */
- return square_check_line(arg, x, y, arg->width/2) == 0;
- }
- static int
- check_square(const struct arg *arg, double x, double y)
- {
- /* So for this function a result of 'INSIDE' means inside the actual lines.
- */
- double w = arg->width/2;
- if (square_check_line(arg, x, y, w+FILTER_WIDTH) == 0)
- {
- /* Somewhere close to the boundary lines. If far enough inside one of
- * them then we can return INSIDE:
- */
- w -= FILTER_WIDTH;
- if (w > 0 && square_check_line(arg, x, y, w) == 0)
- return INSIDE;
- /* Point is somewhere in the filter region: */
- return 0;
- }
- else /* Inside or outside the square by more than w+FILTER_WIDTH. */
- return OUTSIDE;
- }
- /* "circle",
- * { inside_circle_filled, check_circle_filled },
- * { inside_circle, check_circle }
- *
- * The functions here are analoguous to the square ones; however, they check
- * the corresponding ellipse as opposed to the rectangle.
- */
- static int
- circle_check(double x, double y, double x1, double y1, double x2, double y2)
- {
- if (square_check(x, y, x1, y1, x2, y2))
- {
- /* Inside the square, so maybe inside the circle too: */
- const double cx = (x1 + x2)/2;
- const double cy = (y1 + y2)/2;
- const double dx = x1 - x2;
- const double dy = y1 - y2;
- x = (x - cx)/dx;
- y = (y - cy)/dy;
- /* It is outside if the distance from the center is more than half the
- * diameter:
- */
- return x*x+y*y < .25;
- }
- return 0; /* outside */
- }
- static int
- inside_circle_filled(const struct arg *arg, double x, double y)
- {
- return circle_check(x, y, arg->x1, arg->y1, arg->x2, arg->y2);
- }
- static int
- circle_check_line(const struct arg *arg, double x, double y, double w)
- /* Check for a point being inside the boundaries implied by the given arg
- * and assuming a width 2*w each side of the boundaries. This function has
- * the same semantic as square_check_line but tests the circle.
- */
- {
- double cx = (arg->x1+arg->x2)/2;
- double wx = fabs(arg->x1-arg->x2)/2;
- double cy = (arg->y1+arg->y2)/2;
- double wy = fabs(arg->y1-arg->y2)/2;
- if (circle_check(x, y, cx-wx-w, cy-wy-w, cx+wx+w, cy+wy+w))
- {
- /* Inside, but maybe too far; check for the redundant case where
- * the lines overlap:
- */
- wx -= w;
- wy -= w;
- if (wx > 0 && wy > 0 && circle_check(x, y, cx-wx, cy-wy, cx+wx, cy+wy))
- return INSIDE; /* between (inside) the boundary lines. */
- return 0; /* inside the lines themselves. */
- }
- return OUTSIDE; /* outside the boundary lines. */
- }
- static int
- check_circle_filled(const struct arg *arg, double x, double y)
- {
- return circle_check_line(arg, x, y, FILTER_WIDTH);
- }
- static int
- inside_circle(const struct arg *arg, double x, double y)
- {
- return circle_check_line(arg, x, y, arg->width/2) == 0;
- }
- static int
- check_circle(const struct arg *arg, double x, double y)
- {
- /* Exactly as the 'square' code. */
- double w = arg->width/2;
- if (circle_check_line(arg, x, y, w+FILTER_WIDTH) == 0)
- {
- w -= FILTER_WIDTH;
- if (w > 0 && circle_check_line(arg, x, y, w) == 0)
- return INSIDE;
- /* Point is somewhere in the filter region: */
- return 0;
- }
- else /* Inside or outside the square by more than w+FILTER_WIDTH. */
- return OUTSIDE;
- }
- /* "line",
- * { NULL, NULL }, There is no 'filled' line.
- * { inside_line, check_line }
- */
- static int
- line_check(double x, double y, double x1, double y1, double x2, double y2,
- double w, double expand)
- {
- /* Shift all the points to (arg->x1, arg->y1) */
- double lx = x2 - x1;
- double ly = y2 - y1;
- double len2 = lx*lx + ly*ly;
- double cross, dot;
- x -= x1;
- y -= y1;
- /* The dot product is the distance down the line, the cross product is
- * the distance away from the line:
- *
- * distance = |cross| / sqrt(len2)
- */
- cross = x * ly - y * lx;
- /* If 'distance' is more than w the point is definitely outside the line:
- *
- * distance >= w
- * |cross| >= w * sqrt(len2)
- * cross^2 >= w^2 * len2:
- */
- if (cross*cross >= (w+expand)*(w+expand)*len2)
- return 0; /* outside */
- /* Now find the distance *along* the line; this comes from the dot product
- * lx.x+ly.y. The actual distance (in pixels) is:
- *
- * distance = dot / sqrt(len2)
- */
- dot = lx * x + ly * y;
- /* The test for 'outside' is:
- *
- * distance < 0 || distance > sqrt(len2)
- * -> dot / sqrt(len2) > sqrt(len2)
- * -> dot > len2
- *
- * But 'expand' is used for the filter width and needs to be handled too:
- */
- return dot > -expand && dot < len2+expand;
- }
- static int
- inside_line(const struct arg *arg, double x, double y)
- {
- return line_check(x, y, arg->x1, arg->y1, arg->x2, arg->y2, arg->width/2, 0);
- }
- static int
- check_line(const struct arg *arg, double x, double y)
- {
- /* The end caps of the line must be checked too; it's not enough just to
- * widen the line by FILTER_WIDTH; 'expand' exists for this purpose:
- */
- if (line_check(x, y, arg->x1, arg->y1, arg->x2, arg->y2, arg->width/2,
- FILTER_WIDTH))
- {
- /* Inside the line+filter; far enough inside that the filter isn't
- * required?
- */
- if (arg->width > 2*FILTER_WIDTH &&
- line_check(x, y, arg->x1, arg->y1, arg->x2, arg->y2, arg->width/2,
- -FILTER_WIDTH))
- return INSIDE;
- return 0;
- }
- return OUTSIDE;
- }
- static const struct
- {
- const char *name;
- shape_fn_ptr function[2/*fill,line*/][2];
- # define FN_INSIDE 0
- # define FN_CHECK 1
- } shape_defs[] =
- {
- { "square",
- { { inside_square_filled, check_square_filled },
- { inside_square, check_square } }
- },
- { "circle",
- { { inside_circle_filled, check_circle_filled },
- { inside_circle, check_circle } }
- },
- { "line",
- { { NULL, NULL },
- { inside_line, check_line } }
- }
- };
- #define shape_count ((sizeof shape_defs)/(sizeof shape_defs[0]))
- static shape_fn_ptr
- shape_of(const char *arg, double width, int f)
- {
- unsigned int i;
- for (i=0; i<shape_count; ++i) if (strcmp(shape_defs[i].name, arg) == 0)
- {
- shape_fn_ptr fn = shape_defs[i].function[width != 0][f];
- if (fn != NULL)
- return fn;
- fprintf(stderr, "genpng: %s %s not supported\n",
- width == 0 ? "filled" : "unfilled", arg);
- exit(1);
- }
- fprintf(stderr, "genpng: %s: not a valid shape name\n", arg);
- exit(1);
- }
- static void
- parse_arg(struct arg *arg, const char **argv/*7 arguments*/)
- {
- /* shape ::= color width shape x1 y1 x2 y2 */
- arg->color = color_of(argv[0]);
- arg->width = width_of(argv[1]);
- arg->inside_fn = shape_of(argv[2], arg->width, FN_INSIDE);
- arg->check_fn = shape_of(argv[2], arg->width, FN_CHECK);
- arg->x1 = coordinate_of(argv[3]);
- arg->y1 = coordinate_of(argv[4]);
- arg->x2 = coordinate_of(argv[5]);
- arg->y2 = coordinate_of(argv[6]);
- }
- static png_uint_32
- read_wh(const char *name, const char *str)
- /* read a PNG width or height */
- {
- char *ep = NULL;
- unsigned long ul = strtoul(str, &ep, 10);
- if (ep != NULL && *ep == 0 && ul > 0 && ul <= 0x7fffffff)
- return (png_uint_32)/*SAFE*/ul;
- fprintf(stderr, "genpng: %s: invalid number %s\n", name, str);
- exit(1);
- }
- static void
- pixel(png_uint_16p p, struct arg *args, int nargs, double x, double y)
- {
- /* Fill in the pixel by checking each shape (args[nargs]) for effects on
- * the corresponding sample:
- */
- double r=0, g=0, b=0, a=0;
- while (--nargs >= 0 && a != 1)
- {
- /* NOTE: alpha_calc can return a value outside the range 0..1 with the
- * bicubic filter.
- */
- const double alpha = alpha_calc(args+nargs, x, y) * (1-a);
- r += alpha * args[nargs].color->red;
- g += alpha * args[nargs].color->green;
- b += alpha * args[nargs].color->blue;
- a += alpha;
- }
- /* 'a' may be negative or greater than 1; if it is, negative clamp the
- * pixel to 0 if >1 clamp r/g/b:
- */
- if (a > 0)
- {
- if (a > 1)
- {
- if (r > 1) r = 1;
- if (g > 1) g = 1;
- if (b > 1) b = 1;
- a = 1;
- }
- /* And fill in the pixel: */
- p[0] = (png_uint_16)/*SAFE*/round(r * 65535);
- p[1] = (png_uint_16)/*SAFE*/round(g * 65535);
- p[2] = (png_uint_16)/*SAFE*/round(b * 65535);
- p[3] = (png_uint_16)/*SAFE*/round(a * 65535);
- }
- else
- p[3] = p[2] = p[1] = p[0] = 0;
- }
- int
- main(int argc, const char **argv)
- {
- int convert_to_8bit = 0;
- /* There is one option: --8bit: */
- if (argc > 1 && strcmp(argv[1], "--8bit") == 0)
- --argc, ++argv, convert_to_8bit = 1;
- if (argc >= 3)
- {
- png_uint_16p buffer;
- int nshapes;
- png_image image;
- # define max_shapes 256
- struct arg arg_list[max_shapes];
- /* The libpng Simplified API write code requires a fully initialized
- * structure.
- */
- memset(&image, 0, sizeof image);
- image.version = PNG_IMAGE_VERSION;
- image.opaque = NULL;
- image.width = read_wh("width", argv[1]);
- image.height = read_wh("height", argv[2]);
- image.format = PNG_FORMAT_LINEAR_RGB_ALPHA;
- image.flags = 0;
- image.colormap_entries = 0;
- /* Check the remainder of the arguments */
- for (nshapes=0; 3+7*(nshapes+1) <= argc && nshapes < max_shapes;
- ++nshapes)
- parse_arg(arg_list+nshapes, argv+3+7*nshapes);
- if (3+7*nshapes != argc)
- {
- fprintf(stderr, "genpng: %s: too many arguments\n", argv[3+7*nshapes]);
- return 1;
- }
- /* Create the buffer: */
- buffer = malloc(PNG_IMAGE_SIZE(image));
- if (buffer != NULL)
- {
- png_uint_32 y;
- /* Write each row... */
- for (y=0; y<image.height; ++y)
- {
- png_uint_32 x;
- /* Each pixel in each row: */
- for (x=0; x<image.width; ++x)
- pixel(buffer + 4*(x + y*image.width), arg_list, nshapes, x, y);
- }
- /* Write the result (to stdout) */
- if (png_image_write_to_stdio(&image, stdout, convert_to_8bit,
- buffer, 0/*row_stride*/, NULL/*colormap*/))
- {
- free(buffer);
- return 0; /* success */
- }
- else
- fprintf(stderr, "genpng: write stdout: %s\n", image.message);
- free(buffer);
- }
- else
- fprintf(stderr, "genpng: out of memory: %lu bytes\n",
- (unsigned long)PNG_IMAGE_SIZE(image));
- }
- else
- {
- /* Wrong number of arguments */
- fprintf(stderr, "genpng: usage: genpng [--8bit] width height {shape}\n"
- " Generate a transparent PNG in RGBA (truecolor+alpha) format\n"
- " containing the given shape or shapes. Shapes are defined:\n"
- "\n"
- " shape ::= color width shape x1 y1 x2 y2\n"
- " color ::= black|white|red|green|yellow|blue\n"
- " color ::= brown|purple|pink|orange|gray|cyan\n"
- " width ::= filled|<number>\n"
- " shape ::= circle|square|line\n"
- " x1,x2 ::= <number>\n"
- " y1,y2 ::= <number>\n"
- "\n"
- " Numbers are floating point numbers describing points relative to\n"
- " the top left of the output PNG as pixel coordinates. The 'width'\n"
- " parameter is either the width of the line (in output pixels) used\n"
- " to draw the shape or 'filled' to indicate that the shape should\n"
- " be filled with the color.\n"
- "\n"
- " Colors are interpreted loosely to give access to the eight full\n"
- " intensity RGB values:\n"
- "\n"
- " black, red, green, blue, yellow, cyan, purple, white,\n"
- "\n"
- " Cyan is full intensity blue+green; RGB(0,1,1), plus the following\n"
- " lower intensity values:\n"
- "\n"
- " brown: red+orange: RGB(0.5, 0.125, 0) (dark red+orange)\n"
- " pink: red+white: RGB(1.0, 0.5, 0.5)\n"
- " orange: red+yellow: RGB(1.0, 0.5, 0)\n"
- " gray: black+white: RGB(0.5, 0.5, 0.5)\n"
- "\n"
- " The RGB values are selected to make detection of aliasing errors\n"
- " easy. The names are selected to make the description of errors\n"
- " easy.\n"
- "\n"
- " The PNG is written to stdout, if --8bit is given a 32bpp RGBA sRGB\n"
- " file is produced, otherwise a 64bpp RGBA linear encoded file is\n"
- " written.\n");
- }
- return 1;
- }
- #endif /* SIMPLIFIED_WRITE && STDIO */
|