jquant1.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858
  1. /*
  2. * jquant1.c
  3. *
  4. * Copyright (C) 1991-1996, Thomas G. Lane.
  5. * Modified 2011 by Guido Vollbeding.
  6. * This file is part of the Independent JPEG Group's software.
  7. * For conditions of distribution and use, see the accompanying README file.
  8. *
  9. * This file contains 1-pass color quantization (color mapping) routines.
  10. * These routines provide mapping to a fixed color map using equally spaced
  11. * color values. Optional Floyd-Steinberg or ordered dithering is available.
  12. */
  13. #define JPEG_INTERNALS
  14. #include "jinclude.h"
  15. #include "jpeglib.h"
  16. #ifdef QUANT_1PASS_SUPPORTED
  17. /*
  18. * The main purpose of 1-pass quantization is to provide a fast, if not very
  19. * high quality, colormapped output capability. A 2-pass quantizer usually
  20. * gives better visual quality; however, for quantized grayscale output this
  21. * quantizer is perfectly adequate. Dithering is highly recommended with this
  22. * quantizer, though you can turn it off if you really want to.
  23. *
  24. * In 1-pass quantization the colormap must be chosen in advance of seeing the
  25. * image. We use a map consisting of all combinations of Ncolors[i] color
  26. * values for the i'th component. The Ncolors[] values are chosen so that
  27. * their product, the total number of colors, is no more than that requested.
  28. * (In most cases, the product will be somewhat less.)
  29. *
  30. * Since the colormap is orthogonal, the representative value for each color
  31. * component can be determined without considering the other components;
  32. * then these indexes can be combined into a colormap index by a standard
  33. * N-dimensional-array-subscript calculation. Most of the arithmetic involved
  34. * can be precalculated and stored in the lookup table colorindex[].
  35. * colorindex[i][j] maps pixel value j in component i to the nearest
  36. * representative value (grid plane) for that component; this index is
  37. * multiplied by the array stride for component i, so that the
  38. * index of the colormap entry closest to a given pixel value is just
  39. * sum( colorindex[component-number][pixel-component-value] )
  40. * Aside from being fast, this scheme allows for variable spacing between
  41. * representative values with no additional lookup cost.
  42. *
  43. * If gamma correction has been applied in color conversion, it might be wise
  44. * to adjust the color grid spacing so that the representative colors are
  45. * equidistant in linear space. At this writing, gamma correction is not
  46. * implemented by jdcolor, so nothing is done here.
  47. */
  48. /* Declarations for ordered dithering.
  49. *
  50. * We use a standard 16x16 ordered dither array. The basic concept of ordered
  51. * dithering is described in many references, for instance Dale Schumacher's
  52. * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
  53. * In place of Schumacher's comparisons against a "threshold" value, we add a
  54. * "dither" value to the input pixel and then round the result to the nearest
  55. * output value. The dither value is equivalent to (0.5 - threshold) times
  56. * the distance between output values. For ordered dithering, we assume that
  57. * the output colors are equally spaced; if not, results will probably be
  58. * worse, since the dither may be too much or too little at a given point.
  59. *
  60. * The normal calculation would be to form pixel value + dither, range-limit
  61. * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
  62. * We can skip the separate range-limiting step by extending the colorindex
  63. * table in both directions.
  64. */
  65. #define ODITHER_SIZE 16 /* dimension of dither matrix */
  66. /* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
  67. #define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE) /* # cells in matrix */
  68. #define ODITHER_MASK (ODITHER_SIZE-1) /* mask for wrapping around counters */
  69. typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
  70. typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
  71. static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
  72. /* Bayer's order-4 dither array. Generated by the code given in
  73. * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
  74. * The values in this array must range from 0 to ODITHER_CELLS-1.
  75. */
  76. { 0,192, 48,240, 12,204, 60,252, 3,195, 51,243, 15,207, 63,255 },
  77. { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
  78. { 32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
  79. { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
  80. { 8,200, 56,248, 4,196, 52,244, 11,203, 59,251, 7,199, 55,247 },
  81. { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
  82. { 40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
  83. { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
  84. { 2,194, 50,242, 14,206, 62,254, 1,193, 49,241, 13,205, 61,253 },
  85. { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
  86. { 34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
  87. { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
  88. { 10,202, 58,250, 6,198, 54,246, 9,201, 57,249, 5,197, 53,245 },
  89. { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
  90. { 42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
  91. { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
  92. };
  93. /* Declarations for Floyd-Steinberg dithering.
  94. *
  95. * Errors are accumulated into the array fserrors[], at a resolution of
  96. * 1/16th of a pixel count. The error at a given pixel is propagated
  97. * to its not-yet-processed neighbors using the standard F-S fractions,
  98. * ... (here) 7/16
  99. * 3/16 5/16 1/16
  100. * We work left-to-right on even rows, right-to-left on odd rows.
  101. *
  102. * We can get away with a single array (holding one row's worth of errors)
  103. * by using it to store the current row's errors at pixel columns not yet
  104. * processed, but the next row's errors at columns already processed. We
  105. * need only a few extra variables to hold the errors immediately around the
  106. * current column. (If we are lucky, those variables are in registers, but
  107. * even if not, they're probably cheaper to access than array elements are.)
  108. *
  109. * The fserrors[] array is indexed [component#][position].
  110. * We provide (#columns + 2) entries per component; the extra entry at each
  111. * end saves us from special-casing the first and last pixels.
  112. *
  113. * Note: on a wide image, we might not have enough room in a PC's near data
  114. * segment to hold the error array; so it is allocated with alloc_large.
  115. */
  116. #if BITS_IN_JSAMPLE == 8
  117. typedef INT16 FSERROR; /* 16 bits should be enough */
  118. typedef int LOCFSERROR; /* use 'int' for calculation temps */
  119. #else
  120. typedef INT32 FSERROR; /* may need more than 16 bits */
  121. typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */
  122. #endif
  123. typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */
  124. /* Private subobject */
  125. #define MAX_Q_COMPS 4 /* max components I can handle */
  126. typedef struct {
  127. struct jpeg_color_quantizer pub; /* public fields */
  128. /* Initially allocated colormap is saved here */
  129. JSAMPARRAY sv_colormap; /* The color map as a 2-D pixel array */
  130. int sv_actual; /* number of entries in use */
  131. JSAMPARRAY colorindex; /* Precomputed mapping for speed */
  132. /* colorindex[i][j] = index of color closest to pixel value j in component i,
  133. * premultiplied as described above. Since colormap indexes must fit into
  134. * JSAMPLEs, the entries of this array will too.
  135. */
  136. boolean is_padded; /* is the colorindex padded for odither? */
  137. int Ncolors[MAX_Q_COMPS]; /* # of values alloced to each component */
  138. /* Variables for ordered dithering */
  139. int row_index; /* cur row's vertical index in dither matrix */
  140. ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
  141. /* Variables for Floyd-Steinberg dithering */
  142. FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
  143. boolean on_odd_row; /* flag to remember which row we are on */
  144. } my_cquantizer;
  145. typedef my_cquantizer * my_cquantize_ptr;
  146. /*
  147. * Policy-making subroutines for create_colormap and create_colorindex.
  148. * These routines determine the colormap to be used. The rest of the module
  149. * only assumes that the colormap is orthogonal.
  150. *
  151. * * select_ncolors decides how to divvy up the available colors
  152. * among the components.
  153. * * output_value defines the set of representative values for a component.
  154. * * largest_input_value defines the mapping from input values to
  155. * representative values for a component.
  156. * Note that the latter two routines may impose different policies for
  157. * different components, though this is not currently done.
  158. */
  159. LOCAL(int)
  160. select_ncolors (j_decompress_ptr cinfo, int Ncolors[])
  161. /* Determine allocation of desired colors to components, */
  162. /* and fill in Ncolors[] array to indicate choice. */
  163. /* Return value is total number of colors (product of Ncolors[] values). */
  164. {
  165. int nc = cinfo->out_color_components; /* number of color components */
  166. int max_colors = cinfo->desired_number_of_colors;
  167. int total_colors, iroot, i, j;
  168. boolean changed;
  169. long temp;
  170. static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
  171. /* We can allocate at least the nc'th root of max_colors per component. */
  172. /* Compute floor(nc'th root of max_colors). */
  173. iroot = 1;
  174. do {
  175. iroot++;
  176. temp = iroot; /* set temp = iroot ** nc */
  177. for (i = 1; i < nc; i++)
  178. temp *= iroot;
  179. } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */
  180. iroot--; /* now iroot = floor(root) */
  181. /* Must have at least 2 color values per component */
  182. if (iroot < 2)
  183. ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp);
  184. /* Initialize to iroot color values for each component */
  185. total_colors = 1;
  186. for (i = 0; i < nc; i++) {
  187. Ncolors[i] = iroot;
  188. total_colors *= iroot;
  189. }
  190. /* We may be able to increment the count for one or more components without
  191. * exceeding max_colors, though we know not all can be incremented.
  192. * Sometimes, the first component can be incremented more than once!
  193. * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
  194. * In RGB colorspace, try to increment G first, then R, then B.
  195. */
  196. do {
  197. changed = FALSE;
  198. for (i = 0; i < nc; i++) {
  199. j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
  200. /* calculate new total_colors if Ncolors[j] is incremented */
  201. temp = total_colors / Ncolors[j];
  202. temp *= Ncolors[j]+1; /* done in long arith to avoid oflo */
  203. if (temp > (long) max_colors)
  204. break; /* won't fit, done with this pass */
  205. Ncolors[j]++; /* OK, apply the increment */
  206. total_colors = (int) temp;
  207. changed = TRUE;
  208. }
  209. } while (changed);
  210. return total_colors;
  211. }
  212. LOCAL(int)
  213. output_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
  214. /* Return j'th output value, where j will range from 0 to maxj */
  215. /* The output values must fall in 0..MAXJSAMPLE in increasing order */
  216. {
  217. /* We always provide values 0 and MAXJSAMPLE for each component;
  218. * any additional values are equally spaced between these limits.
  219. * (Forcing the upper and lower values to the limits ensures that
  220. * dithering can't produce a color outside the selected gamut.)
  221. */
  222. return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj);
  223. }
  224. LOCAL(int)
  225. largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
  226. /* Return largest input value that should map to j'th output value */
  227. /* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
  228. {
  229. /* Breakpoints are halfway between values returned by output_value */
  230. return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));
  231. }
  232. /*
  233. * Create the colormap.
  234. */
  235. LOCAL(void)
  236. create_colormap (j_decompress_ptr cinfo)
  237. {
  238. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  239. JSAMPARRAY colormap; /* Created colormap */
  240. int total_colors; /* Number of distinct output colors */
  241. int i,j,k, nci, blksize, blkdist, ptr, val;
  242. /* Select number of colors for each component */
  243. total_colors = select_ncolors(cinfo, cquantize->Ncolors);
  244. /* Report selected color counts */
  245. if (cinfo->out_color_components == 3)
  246. TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,
  247. total_colors, cquantize->Ncolors[0],
  248. cquantize->Ncolors[1], cquantize->Ncolors[2]);
  249. else
  250. TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
  251. /* Allocate and fill in the colormap. */
  252. /* The colors are ordered in the map in standard row-major order, */
  253. /* i.e. rightmost (highest-indexed) color changes most rapidly. */
  254. colormap = (*cinfo->mem->alloc_sarray)
  255. ((j_common_ptr) cinfo, JPOOL_IMAGE,
  256. (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components);
  257. /* blksize is number of adjacent repeated entries for a component */
  258. /* blkdist is distance between groups of identical entries for a component */
  259. blkdist = total_colors;
  260. for (i = 0; i < cinfo->out_color_components; i++) {
  261. /* fill in colormap entries for i'th color component */
  262. nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
  263. blksize = blkdist / nci;
  264. for (j = 0; j < nci; j++) {
  265. /* Compute j'th output value (out of nci) for component */
  266. val = output_value(cinfo, i, j, nci-1);
  267. /* Fill in all colormap entries that have this value of this component */
  268. for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
  269. /* fill in blksize entries beginning at ptr */
  270. for (k = 0; k < blksize; k++)
  271. colormap[i][ptr+k] = (JSAMPLE) val;
  272. }
  273. }
  274. blkdist = blksize; /* blksize of this color is blkdist of next */
  275. }
  276. /* Save the colormap in private storage,
  277. * where it will survive color quantization mode changes.
  278. */
  279. cquantize->sv_colormap = colormap;
  280. cquantize->sv_actual = total_colors;
  281. }
  282. /*
  283. * Create the color index table.
  284. */
  285. LOCAL(void)
  286. create_colorindex (j_decompress_ptr cinfo)
  287. {
  288. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  289. JSAMPROW indexptr;
  290. int i,j,k, nci, blksize, val, pad;
  291. /* For ordered dither, we pad the color index tables by MAXJSAMPLE in
  292. * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
  293. * This is not necessary in the other dithering modes. However, we
  294. * flag whether it was done in case user changes dithering mode.
  295. */
  296. if (cinfo->dither_mode == JDITHER_ORDERED) {
  297. pad = MAXJSAMPLE*2;
  298. cquantize->is_padded = TRUE;
  299. } else {
  300. pad = 0;
  301. cquantize->is_padded = FALSE;
  302. }
  303. cquantize->colorindex = (*cinfo->mem->alloc_sarray)
  304. ((j_common_ptr) cinfo, JPOOL_IMAGE,
  305. (JDIMENSION) (MAXJSAMPLE+1 + pad),
  306. (JDIMENSION) cinfo->out_color_components);
  307. /* blksize is number of adjacent repeated entries for a component */
  308. blksize = cquantize->sv_actual;
  309. for (i = 0; i < cinfo->out_color_components; i++) {
  310. /* fill in colorindex entries for i'th color component */
  311. nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
  312. blksize = blksize / nci;
  313. /* adjust colorindex pointers to provide padding at negative indexes. */
  314. if (pad)
  315. cquantize->colorindex[i] += MAXJSAMPLE;
  316. /* in loop, val = index of current output value, */
  317. /* and k = largest j that maps to current val */
  318. indexptr = cquantize->colorindex[i];
  319. val = 0;
  320. k = largest_input_value(cinfo, i, 0, nci-1);
  321. for (j = 0; j <= MAXJSAMPLE; j++) {
  322. while (j > k) /* advance val if past boundary */
  323. k = largest_input_value(cinfo, i, ++val, nci-1);
  324. /* premultiply so that no multiplication needed in main processing */
  325. indexptr[j] = (JSAMPLE) (val * blksize);
  326. }
  327. /* Pad at both ends if necessary */
  328. if (pad)
  329. for (j = 1; j <= MAXJSAMPLE; j++) {
  330. indexptr[-j] = indexptr[0];
  331. indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE];
  332. }
  333. }
  334. }
  335. /*
  336. * Create an ordered-dither array for a component having ncolors
  337. * distinct output values.
  338. */
  339. LOCAL(ODITHER_MATRIX_PTR)
  340. make_odither_array (j_decompress_ptr cinfo, int ncolors)
  341. {
  342. ODITHER_MATRIX_PTR odither;
  343. int j,k;
  344. INT32 num,den;
  345. odither = (ODITHER_MATRIX_PTR)
  346. (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
  347. SIZEOF(ODITHER_MATRIX));
  348. /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
  349. * Hence the dither value for the matrix cell with fill order f
  350. * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
  351. * On 16-bit-int machine, be careful to avoid overflow.
  352. */
  353. den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1));
  354. for (j = 0; j < ODITHER_SIZE; j++) {
  355. for (k = 0; k < ODITHER_SIZE; k++) {
  356. num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k])))
  357. * MAXJSAMPLE;
  358. /* Ensure round towards zero despite C's lack of consistency
  359. * about rounding negative values in integer division...
  360. */
  361. odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den);
  362. }
  363. }
  364. return odither;
  365. }
  366. /*
  367. * Create the ordered-dither tables.
  368. * Components having the same number of representative colors may
  369. * share a dither table.
  370. */
  371. LOCAL(void)
  372. create_odither_tables (j_decompress_ptr cinfo)
  373. {
  374. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  375. ODITHER_MATRIX_PTR odither;
  376. int i, j, nci;
  377. for (i = 0; i < cinfo->out_color_components; i++) {
  378. nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
  379. odither = NULL; /* search for matching prior component */
  380. for (j = 0; j < i; j++) {
  381. if (nci == cquantize->Ncolors[j]) {
  382. odither = cquantize->odither[j];
  383. break;
  384. }
  385. }
  386. if (odither == NULL) /* need a new table? */
  387. odither = make_odither_array(cinfo, nci);
  388. cquantize->odither[i] = odither;
  389. }
  390. }
  391. /*
  392. * Map some rows of pixels to the output colormapped representation.
  393. */
  394. METHODDEF(void)
  395. color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
  396. JSAMPARRAY output_buf, int num_rows)
  397. /* General case, no dithering */
  398. {
  399. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  400. JSAMPARRAY colorindex = cquantize->colorindex;
  401. register int pixcode, ci;
  402. register JSAMPROW ptrin, ptrout;
  403. int row;
  404. JDIMENSION col;
  405. JDIMENSION width = cinfo->output_width;
  406. register int nc = cinfo->out_color_components;
  407. for (row = 0; row < num_rows; row++) {
  408. ptrin = input_buf[row];
  409. ptrout = output_buf[row];
  410. for (col = width; col > 0; col--) {
  411. pixcode = 0;
  412. for (ci = 0; ci < nc; ci++) {
  413. pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);
  414. }
  415. *ptrout++ = (JSAMPLE) pixcode;
  416. }
  417. }
  418. }
  419. METHODDEF(void)
  420. color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
  421. JSAMPARRAY output_buf, int num_rows)
  422. /* Fast path for out_color_components==3, no dithering */
  423. {
  424. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  425. register int pixcode;
  426. register JSAMPROW ptrin, ptrout;
  427. JSAMPROW colorindex0 = cquantize->colorindex[0];
  428. JSAMPROW colorindex1 = cquantize->colorindex[1];
  429. JSAMPROW colorindex2 = cquantize->colorindex[2];
  430. int row;
  431. JDIMENSION col;
  432. JDIMENSION width = cinfo->output_width;
  433. for (row = 0; row < num_rows; row++) {
  434. ptrin = input_buf[row];
  435. ptrout = output_buf[row];
  436. for (col = width; col > 0; col--) {
  437. pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);
  438. pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);
  439. pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);
  440. *ptrout++ = (JSAMPLE) pixcode;
  441. }
  442. }
  443. }
  444. METHODDEF(void)
  445. quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
  446. JSAMPARRAY output_buf, int num_rows)
  447. /* General case, with ordered dithering */
  448. {
  449. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  450. register JSAMPROW input_ptr;
  451. register JSAMPROW output_ptr;
  452. JSAMPROW colorindex_ci;
  453. int * dither; /* points to active row of dither matrix */
  454. int row_index, col_index; /* current indexes into dither matrix */
  455. int nc = cinfo->out_color_components;
  456. int ci;
  457. int row;
  458. JDIMENSION col;
  459. JDIMENSION width = cinfo->output_width;
  460. for (row = 0; row < num_rows; row++) {
  461. /* Initialize output values to 0 so can process components separately */
  462. FMEMZERO((void FAR *) output_buf[row],
  463. (size_t) (width * SIZEOF(JSAMPLE)));
  464. row_index = cquantize->row_index;
  465. for (ci = 0; ci < nc; ci++) {
  466. input_ptr = input_buf[row] + ci;
  467. output_ptr = output_buf[row];
  468. colorindex_ci = cquantize->colorindex[ci];
  469. dither = cquantize->odither[ci][row_index];
  470. col_index = 0;
  471. for (col = width; col > 0; col--) {
  472. /* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
  473. * select output value, accumulate into output code for this pixel.
  474. * Range-limiting need not be done explicitly, as we have extended
  475. * the colorindex table to produce the right answers for out-of-range
  476. * inputs. The maximum dither is +- MAXJSAMPLE; this sets the
  477. * required amount of padding.
  478. */
  479. *output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]];
  480. input_ptr += nc;
  481. output_ptr++;
  482. col_index = (col_index + 1) & ODITHER_MASK;
  483. }
  484. }
  485. /* Advance row index for next row */
  486. row_index = (row_index + 1) & ODITHER_MASK;
  487. cquantize->row_index = row_index;
  488. }
  489. }
  490. METHODDEF(void)
  491. quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
  492. JSAMPARRAY output_buf, int num_rows)
  493. /* Fast path for out_color_components==3, with ordered dithering */
  494. {
  495. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  496. register int pixcode;
  497. register JSAMPROW input_ptr;
  498. register JSAMPROW output_ptr;
  499. JSAMPROW colorindex0 = cquantize->colorindex[0];
  500. JSAMPROW colorindex1 = cquantize->colorindex[1];
  501. JSAMPROW colorindex2 = cquantize->colorindex[2];
  502. int * dither0; /* points to active row of dither matrix */
  503. int * dither1;
  504. int * dither2;
  505. int row_index, col_index; /* current indexes into dither matrix */
  506. int row;
  507. JDIMENSION col;
  508. JDIMENSION width = cinfo->output_width;
  509. for (row = 0; row < num_rows; row++) {
  510. row_index = cquantize->row_index;
  511. input_ptr = input_buf[row];
  512. output_ptr = output_buf[row];
  513. dither0 = cquantize->odither[0][row_index];
  514. dither1 = cquantize->odither[1][row_index];
  515. dither2 = cquantize->odither[2][row_index];
  516. col_index = 0;
  517. for (col = width; col > 0; col--) {
  518. pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) +
  519. dither0[col_index]]);
  520. pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) +
  521. dither1[col_index]]);
  522. pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) +
  523. dither2[col_index]]);
  524. *output_ptr++ = (JSAMPLE) pixcode;
  525. col_index = (col_index + 1) & ODITHER_MASK;
  526. }
  527. row_index = (row_index + 1) & ODITHER_MASK;
  528. cquantize->row_index = row_index;
  529. }
  530. }
  531. METHODDEF(void)
  532. quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
  533. JSAMPARRAY output_buf, int num_rows)
  534. /* General case, with Floyd-Steinberg dithering */
  535. {
  536. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  537. register LOCFSERROR cur; /* current error or pixel value */
  538. LOCFSERROR belowerr; /* error for pixel below cur */
  539. LOCFSERROR bpreverr; /* error for below/prev col */
  540. LOCFSERROR bnexterr; /* error for below/next col */
  541. LOCFSERROR delta;
  542. register FSERRPTR errorptr; /* => fserrors[] at column before current */
  543. register JSAMPROW input_ptr;
  544. register JSAMPROW output_ptr;
  545. JSAMPROW colorindex_ci;
  546. JSAMPROW colormap_ci;
  547. int pixcode;
  548. int nc = cinfo->out_color_components;
  549. int dir; /* 1 for left-to-right, -1 for right-to-left */
  550. int dirnc; /* dir * nc */
  551. int ci;
  552. int row;
  553. JDIMENSION col;
  554. JDIMENSION width = cinfo->output_width;
  555. JSAMPLE *range_limit = cinfo->sample_range_limit;
  556. SHIFT_TEMPS
  557. for (row = 0; row < num_rows; row++) {
  558. /* Initialize output values to 0 so can process components separately */
  559. FMEMZERO((void FAR *) output_buf[row],
  560. (size_t) (width * SIZEOF(JSAMPLE)));
  561. for (ci = 0; ci < nc; ci++) {
  562. input_ptr = input_buf[row] + ci;
  563. output_ptr = output_buf[row];
  564. if (cquantize->on_odd_row) {
  565. /* work right to left in this row */
  566. input_ptr += (width-1) * nc; /* so point to rightmost pixel */
  567. output_ptr += width-1;
  568. dir = -1;
  569. dirnc = -nc;
  570. errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */
  571. } else {
  572. /* work left to right in this row */
  573. dir = 1;
  574. dirnc = nc;
  575. errorptr = cquantize->fserrors[ci]; /* => entry before first column */
  576. }
  577. colorindex_ci = cquantize->colorindex[ci];
  578. colormap_ci = cquantize->sv_colormap[ci];
  579. /* Preset error values: no error propagated to first pixel from left */
  580. cur = 0;
  581. /* and no error propagated to row below yet */
  582. belowerr = bpreverr = 0;
  583. for (col = width; col > 0; col--) {
  584. /* cur holds the error propagated from the previous pixel on the
  585. * current line. Add the error propagated from the previous line
  586. * to form the complete error correction term for this pixel, and
  587. * round the error term (which is expressed * 16) to an integer.
  588. * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
  589. * for either sign of the error value.
  590. * Note: errorptr points to *previous* column's array entry.
  591. */
  592. cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
  593. /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
  594. * The maximum error is +- MAXJSAMPLE; this sets the required size
  595. * of the range_limit array.
  596. */
  597. cur += GETJSAMPLE(*input_ptr);
  598. cur = GETJSAMPLE(range_limit[cur]);
  599. /* Select output value, accumulate into output code for this pixel */
  600. pixcode = GETJSAMPLE(colorindex_ci[cur]);
  601. *output_ptr += (JSAMPLE) pixcode;
  602. /* Compute actual representation error at this pixel */
  603. /* Note: we can do this even though we don't have the final */
  604. /* pixel code, because the colormap is orthogonal. */
  605. cur -= GETJSAMPLE(colormap_ci[pixcode]);
  606. /* Compute error fractions to be propagated to adjacent pixels.
  607. * Add these into the running sums, and simultaneously shift the
  608. * next-line error sums left by 1 column.
  609. */
  610. bnexterr = cur;
  611. delta = cur * 2;
  612. cur += delta; /* form error * 3 */
  613. errorptr[0] = (FSERROR) (bpreverr + cur);
  614. cur += delta; /* form error * 5 */
  615. bpreverr = belowerr + cur;
  616. belowerr = bnexterr;
  617. cur += delta; /* form error * 7 */
  618. /* At this point cur contains the 7/16 error value to be propagated
  619. * to the next pixel on the current line, and all the errors for the
  620. * next line have been shifted over. We are therefore ready to move on.
  621. */
  622. input_ptr += dirnc; /* advance input ptr to next column */
  623. output_ptr += dir; /* advance output ptr to next column */
  624. errorptr += dir; /* advance errorptr to current column */
  625. }
  626. /* Post-loop cleanup: we must unload the final error value into the
  627. * final fserrors[] entry. Note we need not unload belowerr because
  628. * it is for the dummy column before or after the actual array.
  629. */
  630. errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */
  631. }
  632. cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
  633. }
  634. }
  635. /*
  636. * Allocate workspace for Floyd-Steinberg errors.
  637. */
  638. LOCAL(void)
  639. alloc_fs_workspace (j_decompress_ptr cinfo)
  640. {
  641. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  642. size_t arraysize;
  643. int i;
  644. arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
  645. for (i = 0; i < cinfo->out_color_components; i++) {
  646. cquantize->fserrors[i] = (FSERRPTR)
  647. (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
  648. }
  649. }
  650. /*
  651. * Initialize for one-pass color quantization.
  652. */
  653. METHODDEF(void)
  654. start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
  655. {
  656. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  657. size_t arraysize;
  658. int i;
  659. /* Install my colormap. */
  660. cinfo->colormap = cquantize->sv_colormap;
  661. cinfo->actual_number_of_colors = cquantize->sv_actual;
  662. /* Initialize for desired dithering mode. */
  663. switch (cinfo->dither_mode) {
  664. case JDITHER_NONE:
  665. if (cinfo->out_color_components == 3)
  666. cquantize->pub.color_quantize = color_quantize3;
  667. else
  668. cquantize->pub.color_quantize = color_quantize;
  669. break;
  670. case JDITHER_ORDERED:
  671. if (cinfo->out_color_components == 3)
  672. cquantize->pub.color_quantize = quantize3_ord_dither;
  673. else
  674. cquantize->pub.color_quantize = quantize_ord_dither;
  675. cquantize->row_index = 0; /* initialize state for ordered dither */
  676. /* If user changed to ordered dither from another mode,
  677. * we must recreate the color index table with padding.
  678. * This will cost extra space, but probably isn't very likely.
  679. */
  680. if (! cquantize->is_padded)
  681. create_colorindex(cinfo);
  682. /* Create ordered-dither tables if we didn't already. */
  683. if (cquantize->odither[0] == NULL)
  684. create_odither_tables(cinfo);
  685. break;
  686. case JDITHER_FS:
  687. cquantize->pub.color_quantize = quantize_fs_dither;
  688. cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
  689. /* Allocate Floyd-Steinberg workspace if didn't already. */
  690. if (cquantize->fserrors[0] == NULL)
  691. alloc_fs_workspace(cinfo);
  692. /* Initialize the propagated errors to zero. */
  693. arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
  694. for (i = 0; i < cinfo->out_color_components; i++)
  695. FMEMZERO((void FAR *) cquantize->fserrors[i], arraysize);
  696. break;
  697. default:
  698. ERREXIT(cinfo, JERR_NOT_COMPILED);
  699. break;
  700. }
  701. }
  702. /*
  703. * Finish up at the end of the pass.
  704. */
  705. METHODDEF(void)
  706. finish_pass_1_quant (j_decompress_ptr cinfo)
  707. {
  708. /* no work in 1-pass case */
  709. }
  710. /*
  711. * Switch to a new external colormap between output passes.
  712. * Shouldn't get to this module!
  713. */
  714. METHODDEF(void)
  715. new_color_map_1_quant (j_decompress_ptr cinfo)
  716. {
  717. ERREXIT(cinfo, JERR_MODE_CHANGE);
  718. }
  719. /*
  720. * Module initialization routine for 1-pass color quantization.
  721. */
  722. GLOBAL(void)
  723. jinit_1pass_quantizer (j_decompress_ptr cinfo)
  724. {
  725. my_cquantize_ptr cquantize;
  726. cquantize = (my_cquantize_ptr)
  727. (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
  728. SIZEOF(my_cquantizer));
  729. cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
  730. cquantize->pub.start_pass = start_pass_1_quant;
  731. cquantize->pub.finish_pass = finish_pass_1_quant;
  732. cquantize->pub.new_color_map = new_color_map_1_quant;
  733. cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
  734. cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */
  735. /* Make sure my internal arrays won't overflow */
  736. if (cinfo->out_color_components > MAX_Q_COMPS)
  737. ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
  738. /* Make sure colormap indexes can be represented by JSAMPLEs */
  739. if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
  740. ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1);
  741. /* Create the colormap and color index table. */
  742. create_colormap(cinfo);
  743. create_colorindex(cinfo);
  744. /* Allocate Floyd-Steinberg workspace now if requested.
  745. * We do this now since it is FAR storage and may affect the memory
  746. * manager's space calculations. If the user changes to FS dither
  747. * mode in a later pass, we will allocate the space then, and will
  748. * possibly overrun the max_memory_to_use setting.
  749. */
  750. if (cinfo->dither_mode == JDITHER_FS)
  751. alloc_fs_workspace(cinfo);
  752. }
  753. #endif /* QUANT_1PASS_SUPPORTED */