jdmaster.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540
  1. /*
  2. * jdmaster.c
  3. *
  4. * Copyright (C) 1991-1997, Thomas G. Lane.
  5. * Modified 2002-2015 by Guido Vollbeding.
  6. * This file is part of the Independent JPEG Group's software.
  7. * For conditions of distribution and use, see the accompanying README file.
  8. *
  9. * This file contains master control logic for the JPEG decompressor.
  10. * These routines are concerned with selecting the modules to be executed
  11. * and with determining the number of passes and the work to be done in each
  12. * pass.
  13. */
  14. #define JPEG_INTERNALS
  15. #include "jinclude.h"
  16. #include "jpeglib.h"
  17. /* Private state */
  18. typedef struct {
  19. struct jpeg_decomp_master pub; /* public fields */
  20. int pass_number; /* # of passes completed */
  21. boolean using_merged_upsample; /* TRUE if using merged upsample/cconvert */
  22. /* Saved references to initialized quantizer modules,
  23. * in case we need to switch modes.
  24. */
  25. struct jpeg_color_quantizer * quantizer_1pass;
  26. struct jpeg_color_quantizer * quantizer_2pass;
  27. } my_decomp_master;
  28. typedef my_decomp_master * my_master_ptr;
  29. /*
  30. * Determine whether merged upsample/color conversion should be used.
  31. * CRUCIAL: this must match the actual capabilities of jdmerge.c!
  32. */
  33. LOCAL(boolean)
  34. use_merged_upsample (j_decompress_ptr cinfo)
  35. {
  36. #ifdef UPSAMPLE_MERGING_SUPPORTED
  37. /* Merging is the equivalent of plain box-filter upsampling. */
  38. /* The following condition is only needed if fancy shall select
  39. * a different upsampling method. In our current implementation
  40. * fancy only affects the DCT scaling, thus we can use fancy
  41. * upsampling and merged upsample simultaneously, in particular
  42. * with scaled DCT sizes larger than the default DCTSIZE.
  43. */
  44. #if 0
  45. if (cinfo->do_fancy_upsampling)
  46. return FALSE;
  47. #endif
  48. if (cinfo->CCIR601_sampling)
  49. return FALSE;
  50. /* jdmerge.c only supports YCC=>RGB color conversion */
  51. if ((cinfo->jpeg_color_space != JCS_YCbCr &&
  52. cinfo->jpeg_color_space != JCS_BG_YCC) ||
  53. cinfo->num_components != 3 ||
  54. cinfo->out_color_space != JCS_RGB ||
  55. cinfo->out_color_components != RGB_PIXELSIZE ||
  56. cinfo->color_transform)
  57. return FALSE;
  58. /* and it only handles 2h1v or 2h2v sampling ratios */
  59. if (cinfo->comp_info[0].h_samp_factor != 2 ||
  60. cinfo->comp_info[1].h_samp_factor != 1 ||
  61. cinfo->comp_info[2].h_samp_factor != 1 ||
  62. cinfo->comp_info[0].v_samp_factor > 2 ||
  63. cinfo->comp_info[1].v_samp_factor != 1 ||
  64. cinfo->comp_info[2].v_samp_factor != 1)
  65. return FALSE;
  66. /* furthermore, it doesn't work if we've scaled the IDCTs differently */
  67. if (cinfo->comp_info[0].DCT_h_scaled_size != cinfo->min_DCT_h_scaled_size ||
  68. cinfo->comp_info[1].DCT_h_scaled_size != cinfo->min_DCT_h_scaled_size ||
  69. cinfo->comp_info[2].DCT_h_scaled_size != cinfo->min_DCT_h_scaled_size ||
  70. cinfo->comp_info[0].DCT_v_scaled_size != cinfo->min_DCT_v_scaled_size ||
  71. cinfo->comp_info[1].DCT_v_scaled_size != cinfo->min_DCT_v_scaled_size ||
  72. cinfo->comp_info[2].DCT_v_scaled_size != cinfo->min_DCT_v_scaled_size)
  73. return FALSE;
  74. /* ??? also need to test for upsample-time rescaling, when & if supported */
  75. return TRUE; /* by golly, it'll work... */
  76. #else
  77. return FALSE;
  78. #endif
  79. }
  80. /*
  81. * Compute output image dimensions and related values.
  82. * NOTE: this is exported for possible use by application.
  83. * Hence it mustn't do anything that can't be done twice.
  84. * Also note that it may be called before the master module is initialized!
  85. */
  86. GLOBAL(void)
  87. jpeg_calc_output_dimensions (j_decompress_ptr cinfo)
  88. /* Do computations that are needed before master selection phase.
  89. * This function is used for full decompression.
  90. */
  91. {
  92. #ifdef IDCT_SCALING_SUPPORTED
  93. int ci;
  94. jpeg_component_info *compptr;
  95. #endif
  96. /* Prevent application from calling me at wrong times */
  97. if (cinfo->global_state != DSTATE_READY)
  98. ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
  99. /* Compute core output image dimensions and DCT scaling choices. */
  100. jpeg_core_output_dimensions(cinfo);
  101. #ifdef IDCT_SCALING_SUPPORTED
  102. /* In selecting the actual DCT scaling for each component, we try to
  103. * scale up the chroma components via IDCT scaling rather than upsampling.
  104. * This saves time if the upsampler gets to use 1:1 scaling.
  105. * Note this code adapts subsampling ratios which are powers of 2.
  106. */
  107. for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
  108. ci++, compptr++) {
  109. int ssize = 1;
  110. while (cinfo->min_DCT_h_scaled_size * ssize <=
  111. (cinfo->do_fancy_upsampling ? DCTSIZE : DCTSIZE / 2) &&
  112. (cinfo->max_h_samp_factor % (compptr->h_samp_factor * ssize * 2)) == 0) {
  113. ssize = ssize * 2;
  114. }
  115. compptr->DCT_h_scaled_size = cinfo->min_DCT_h_scaled_size * ssize;
  116. ssize = 1;
  117. while (cinfo->min_DCT_v_scaled_size * ssize <=
  118. (cinfo->do_fancy_upsampling ? DCTSIZE : DCTSIZE / 2) &&
  119. (cinfo->max_v_samp_factor % (compptr->v_samp_factor * ssize * 2)) == 0) {
  120. ssize = ssize * 2;
  121. }
  122. compptr->DCT_v_scaled_size = cinfo->min_DCT_v_scaled_size * ssize;
  123. /* We don't support IDCT ratios larger than 2. */
  124. if (compptr->DCT_h_scaled_size > compptr->DCT_v_scaled_size * 2)
  125. compptr->DCT_h_scaled_size = compptr->DCT_v_scaled_size * 2;
  126. else if (compptr->DCT_v_scaled_size > compptr->DCT_h_scaled_size * 2)
  127. compptr->DCT_v_scaled_size = compptr->DCT_h_scaled_size * 2;
  128. }
  129. /* Recompute downsampled dimensions of components;
  130. * application needs to know these if using raw downsampled data.
  131. */
  132. for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
  133. ci++, compptr++) {
  134. /* Size in samples, after IDCT scaling */
  135. compptr->downsampled_width = (JDIMENSION)
  136. jdiv_round_up((long) cinfo->image_width *
  137. (long) (compptr->h_samp_factor * compptr->DCT_h_scaled_size),
  138. (long) (cinfo->max_h_samp_factor * cinfo->block_size));
  139. compptr->downsampled_height = (JDIMENSION)
  140. jdiv_round_up((long) cinfo->image_height *
  141. (long) (compptr->v_samp_factor * compptr->DCT_v_scaled_size),
  142. (long) (cinfo->max_v_samp_factor * cinfo->block_size));
  143. }
  144. #endif /* IDCT_SCALING_SUPPORTED */
  145. /* Report number of components in selected colorspace. */
  146. /* Probably this should be in the color conversion module... */
  147. switch (cinfo->out_color_space) {
  148. case JCS_GRAYSCALE:
  149. cinfo->out_color_components = 1;
  150. break;
  151. case JCS_RGB:
  152. case JCS_BG_RGB:
  153. cinfo->out_color_components = RGB_PIXELSIZE;
  154. break;
  155. case JCS_YCbCr:
  156. case JCS_BG_YCC:
  157. cinfo->out_color_components = 3;
  158. break;
  159. case JCS_CMYK:
  160. case JCS_YCCK:
  161. cinfo->out_color_components = 4;
  162. break;
  163. default: /* else must be same colorspace as in file */
  164. cinfo->out_color_components = cinfo->num_components;
  165. break;
  166. }
  167. cinfo->output_components = (cinfo->quantize_colors ? 1 :
  168. cinfo->out_color_components);
  169. /* See if upsampler will want to emit more than one row at a time */
  170. if (use_merged_upsample(cinfo))
  171. cinfo->rec_outbuf_height = cinfo->max_v_samp_factor;
  172. else
  173. cinfo->rec_outbuf_height = 1;
  174. }
  175. /*
  176. * Several decompression processes need to range-limit values to the range
  177. * 0..MAXJSAMPLE; the input value may fall somewhat outside this range
  178. * due to noise introduced by quantization, roundoff error, etc. These
  179. * processes are inner loops and need to be as fast as possible. On most
  180. * machines, particularly CPUs with pipelines or instruction prefetch,
  181. * a (subscript-check-less) C table lookup
  182. * x = sample_range_limit[x];
  183. * is faster than explicit tests
  184. * if (x < 0) x = 0;
  185. * else if (x > MAXJSAMPLE) x = MAXJSAMPLE;
  186. * These processes all use a common table prepared by the routine below.
  187. *
  188. * For most steps we can mathematically guarantee that the initial value
  189. * of x is within 2*(MAXJSAMPLE+1) of the legal range, so a table running
  190. * from -2*(MAXJSAMPLE+1) to 3*MAXJSAMPLE+2 is sufficient. But for the
  191. * initial limiting step (just after the IDCT), a wildly out-of-range value
  192. * is possible if the input data is corrupt. To avoid any chance of indexing
  193. * off the end of memory and getting a bad-pointer trap, we perform the
  194. * post-IDCT limiting thus:
  195. * x = (sample_range_limit - SUBSET)[(x + CENTER) & MASK];
  196. * where MASK is 2 bits wider than legal sample data, ie 10 bits for 8-bit
  197. * samples. Under normal circumstances this is more than enough range and
  198. * a correct output will be generated; with bogus input data the mask will
  199. * cause wraparound, and we will safely generate a bogus-but-in-range output.
  200. * For the post-IDCT step, we want to convert the data from signed to unsigned
  201. * representation by adding CENTERJSAMPLE at the same time that we limit it.
  202. * This is accomplished with SUBSET = CENTER - CENTERJSAMPLE.
  203. *
  204. * Note that the table is allocated in near data space on PCs; it's small
  205. * enough and used often enough to justify this.
  206. */
  207. LOCAL(void)
  208. prepare_range_limit_table (j_decompress_ptr cinfo)
  209. /* Allocate and fill in the sample_range_limit table */
  210. {
  211. JSAMPLE * table;
  212. int i;
  213. table = (JSAMPLE *)
  214. (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
  215. 5 * (MAXJSAMPLE+1) * SIZEOF(JSAMPLE));
  216. /* First segment of range limit table: limit[x] = 0 for x < 0 */
  217. MEMZERO(table, 2 * (MAXJSAMPLE+1) * SIZEOF(JSAMPLE));
  218. table += 2 * (MAXJSAMPLE+1); /* allow negative subscripts of table */
  219. cinfo->sample_range_limit = table;
  220. /* Main part of range limit table: limit[x] = x */
  221. for (i = 0; i <= MAXJSAMPLE; i++)
  222. table[i] = (JSAMPLE) i;
  223. /* End of range limit table: limit[x] = MAXJSAMPLE for x > MAXJSAMPLE */
  224. for (; i < 3 * (MAXJSAMPLE+1); i++)
  225. table[i] = MAXJSAMPLE;
  226. }
  227. /*
  228. * Master selection of decompression modules.
  229. * This is done once at jpeg_start_decompress time. We determine
  230. * which modules will be used and give them appropriate initialization calls.
  231. * We also initialize the decompressor input side to begin consuming data.
  232. *
  233. * Since jpeg_read_header has finished, we know what is in the SOF
  234. * and (first) SOS markers. We also have all the application parameter
  235. * settings.
  236. */
  237. LOCAL(void)
  238. master_selection (j_decompress_ptr cinfo)
  239. {
  240. my_master_ptr master = (my_master_ptr) cinfo->master;
  241. boolean use_c_buffer;
  242. long samplesperrow;
  243. JDIMENSION jd_samplesperrow;
  244. /* For now, precision must match compiled-in value... */
  245. if (cinfo->data_precision != BITS_IN_JSAMPLE)
  246. ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
  247. /* Initialize dimensions and other stuff */
  248. jpeg_calc_output_dimensions(cinfo);
  249. prepare_range_limit_table(cinfo);
  250. /* Sanity check on image dimensions */
  251. if (cinfo->output_height <= 0 || cinfo->output_width <= 0 ||
  252. cinfo->out_color_components <= 0)
  253. ERREXIT(cinfo, JERR_EMPTY_IMAGE);
  254. /* Width of an output scanline must be representable as JDIMENSION. */
  255. samplesperrow = (long) cinfo->output_width * (long) cinfo->out_color_components;
  256. jd_samplesperrow = (JDIMENSION) samplesperrow;
  257. if ((long) jd_samplesperrow != samplesperrow)
  258. ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
  259. /* Initialize my private state */
  260. master->pass_number = 0;
  261. master->using_merged_upsample = use_merged_upsample(cinfo);
  262. /* Color quantizer selection */
  263. master->quantizer_1pass = NULL;
  264. master->quantizer_2pass = NULL;
  265. /* No mode changes if not using buffered-image mode. */
  266. if (! cinfo->quantize_colors || ! cinfo->buffered_image) {
  267. cinfo->enable_1pass_quant = FALSE;
  268. cinfo->enable_external_quant = FALSE;
  269. cinfo->enable_2pass_quant = FALSE;
  270. }
  271. if (cinfo->quantize_colors) {
  272. if (cinfo->raw_data_out)
  273. ERREXIT(cinfo, JERR_NOTIMPL);
  274. /* 2-pass quantizer only works in 3-component color space. */
  275. if (cinfo->out_color_components != 3) {
  276. cinfo->enable_1pass_quant = TRUE;
  277. cinfo->enable_external_quant = FALSE;
  278. cinfo->enable_2pass_quant = FALSE;
  279. cinfo->colormap = NULL;
  280. } else if (cinfo->colormap != NULL) {
  281. cinfo->enable_external_quant = TRUE;
  282. } else if (cinfo->two_pass_quantize) {
  283. cinfo->enable_2pass_quant = TRUE;
  284. } else {
  285. cinfo->enable_1pass_quant = TRUE;
  286. }
  287. if (cinfo->enable_1pass_quant) {
  288. #ifdef QUANT_1PASS_SUPPORTED
  289. jinit_1pass_quantizer(cinfo);
  290. master->quantizer_1pass = cinfo->cquantize;
  291. #else
  292. ERREXIT(cinfo, JERR_NOT_COMPILED);
  293. #endif
  294. }
  295. /* We use the 2-pass code to map to external colormaps. */
  296. if (cinfo->enable_2pass_quant || cinfo->enable_external_quant) {
  297. #ifdef QUANT_2PASS_SUPPORTED
  298. jinit_2pass_quantizer(cinfo);
  299. master->quantizer_2pass = cinfo->cquantize;
  300. #else
  301. ERREXIT(cinfo, JERR_NOT_COMPILED);
  302. #endif
  303. }
  304. /* If both quantizers are initialized, the 2-pass one is left active;
  305. * this is necessary for starting with quantization to an external map.
  306. */
  307. }
  308. /* Post-processing: in particular, color conversion first */
  309. if (! cinfo->raw_data_out) {
  310. if (master->using_merged_upsample) {
  311. #ifdef UPSAMPLE_MERGING_SUPPORTED
  312. jinit_merged_upsampler(cinfo); /* does color conversion too */
  313. #else
  314. ERREXIT(cinfo, JERR_NOT_COMPILED);
  315. #endif
  316. } else {
  317. jinit_color_deconverter(cinfo);
  318. jinit_upsampler(cinfo);
  319. }
  320. jinit_d_post_controller(cinfo, cinfo->enable_2pass_quant);
  321. }
  322. /* Inverse DCT */
  323. jinit_inverse_dct(cinfo);
  324. /* Entropy decoding: either Huffman or arithmetic coding. */
  325. if (cinfo->arith_code)
  326. jinit_arith_decoder(cinfo);
  327. else {
  328. jinit_huff_decoder(cinfo);
  329. }
  330. /* Initialize principal buffer controllers. */
  331. use_c_buffer = cinfo->inputctl->has_multiple_scans || cinfo->buffered_image;
  332. jinit_d_coef_controller(cinfo, use_c_buffer);
  333. if (! cinfo->raw_data_out)
  334. jinit_d_main_controller(cinfo, FALSE /* never need full buffer here */);
  335. /* We can now tell the memory manager to allocate virtual arrays. */
  336. (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
  337. /* Initialize input side of decompressor to consume first scan. */
  338. (*cinfo->inputctl->start_input_pass) (cinfo);
  339. #ifdef D_MULTISCAN_FILES_SUPPORTED
  340. /* If jpeg_start_decompress will read the whole file, initialize
  341. * progress monitoring appropriately. The input step is counted
  342. * as one pass.
  343. */
  344. if (cinfo->progress != NULL && ! cinfo->buffered_image &&
  345. cinfo->inputctl->has_multiple_scans) {
  346. int nscans;
  347. /* Estimate number of scans to set pass_limit. */
  348. if (cinfo->progressive_mode) {
  349. /* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */
  350. nscans = 2 + 3 * cinfo->num_components;
  351. } else {
  352. /* For a nonprogressive multiscan file, estimate 1 scan per component. */
  353. nscans = cinfo->num_components;
  354. }
  355. cinfo->progress->pass_counter = 0L;
  356. cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans;
  357. cinfo->progress->completed_passes = 0;
  358. cinfo->progress->total_passes = (cinfo->enable_2pass_quant ? 3 : 2);
  359. /* Count the input pass as done */
  360. master->pass_number++;
  361. }
  362. #endif /* D_MULTISCAN_FILES_SUPPORTED */
  363. }
  364. /*
  365. * Per-pass setup.
  366. * This is called at the beginning of each output pass. We determine which
  367. * modules will be active during this pass and give them appropriate
  368. * start_pass calls. We also set is_dummy_pass to indicate whether this
  369. * is a "real" output pass or a dummy pass for color quantization.
  370. * (In the latter case, jdapistd.c will crank the pass to completion.)
  371. */
  372. METHODDEF(void)
  373. prepare_for_output_pass (j_decompress_ptr cinfo)
  374. {
  375. my_master_ptr master = (my_master_ptr) cinfo->master;
  376. if (master->pub.is_dummy_pass) {
  377. #ifdef QUANT_2PASS_SUPPORTED
  378. /* Final pass of 2-pass quantization */
  379. master->pub.is_dummy_pass = FALSE;
  380. (*cinfo->cquantize->start_pass) (cinfo, FALSE);
  381. (*cinfo->post->start_pass) (cinfo, JBUF_CRANK_DEST);
  382. (*cinfo->main->start_pass) (cinfo, JBUF_CRANK_DEST);
  383. #else
  384. ERREXIT(cinfo, JERR_NOT_COMPILED);
  385. #endif /* QUANT_2PASS_SUPPORTED */
  386. } else {
  387. if (cinfo->quantize_colors && cinfo->colormap == NULL) {
  388. /* Select new quantization method */
  389. if (cinfo->two_pass_quantize && cinfo->enable_2pass_quant) {
  390. cinfo->cquantize = master->quantizer_2pass;
  391. master->pub.is_dummy_pass = TRUE;
  392. } else if (cinfo->enable_1pass_quant) {
  393. cinfo->cquantize = master->quantizer_1pass;
  394. } else {
  395. ERREXIT(cinfo, JERR_MODE_CHANGE);
  396. }
  397. }
  398. (*cinfo->idct->start_pass) (cinfo);
  399. (*cinfo->coef->start_output_pass) (cinfo);
  400. if (! cinfo->raw_data_out) {
  401. if (! master->using_merged_upsample)
  402. (*cinfo->cconvert->start_pass) (cinfo);
  403. (*cinfo->upsample->start_pass) (cinfo);
  404. if (cinfo->quantize_colors)
  405. (*cinfo->cquantize->start_pass) (cinfo, master->pub.is_dummy_pass);
  406. (*cinfo->post->start_pass) (cinfo,
  407. (master->pub.is_dummy_pass ? JBUF_SAVE_AND_PASS : JBUF_PASS_THRU));
  408. (*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU);
  409. }
  410. }
  411. /* Set up progress monitor's pass info if present */
  412. if (cinfo->progress != NULL) {
  413. cinfo->progress->completed_passes = master->pass_number;
  414. cinfo->progress->total_passes = master->pass_number +
  415. (master->pub.is_dummy_pass ? 2 : 1);
  416. /* In buffered-image mode, we assume one more output pass if EOI not
  417. * yet reached, but no more passes if EOI has been reached.
  418. */
  419. if (cinfo->buffered_image && ! cinfo->inputctl->eoi_reached) {
  420. cinfo->progress->total_passes += (cinfo->enable_2pass_quant ? 2 : 1);
  421. }
  422. }
  423. }
  424. /*
  425. * Finish up at end of an output pass.
  426. */
  427. METHODDEF(void)
  428. finish_output_pass (j_decompress_ptr cinfo)
  429. {
  430. my_master_ptr master = (my_master_ptr) cinfo->master;
  431. if (cinfo->quantize_colors)
  432. (*cinfo->cquantize->finish_pass) (cinfo);
  433. master->pass_number++;
  434. }
  435. #ifdef D_MULTISCAN_FILES_SUPPORTED
  436. /*
  437. * Switch to a new external colormap between output passes.
  438. */
  439. GLOBAL(void)
  440. jpeg_new_colormap (j_decompress_ptr cinfo)
  441. {
  442. my_master_ptr master = (my_master_ptr) cinfo->master;
  443. /* Prevent application from calling me at wrong times */
  444. if (cinfo->global_state != DSTATE_BUFIMAGE)
  445. ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
  446. if (cinfo->quantize_colors && cinfo->enable_external_quant &&
  447. cinfo->colormap != NULL) {
  448. /* Select 2-pass quantizer for external colormap use */
  449. cinfo->cquantize = master->quantizer_2pass;
  450. /* Notify quantizer of colormap change */
  451. (*cinfo->cquantize->new_color_map) (cinfo);
  452. master->pub.is_dummy_pass = FALSE; /* just in case */
  453. } else
  454. ERREXIT(cinfo, JERR_MODE_CHANGE);
  455. }
  456. #endif /* D_MULTISCAN_FILES_SUPPORTED */
  457. /*
  458. * Initialize master decompression control and select active modules.
  459. * This is performed at the start of jpeg_start_decompress.
  460. */
  461. GLOBAL(void)
  462. jinit_master_decompress (j_decompress_ptr cinfo)
  463. {
  464. my_master_ptr master;
  465. master = (my_master_ptr)
  466. (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
  467. SIZEOF(my_decomp_master));
  468. cinfo->master = &master->pub;
  469. master->pub.prepare_for_output_pass = prepare_for_output_pass;
  470. master->pub.finish_output_pass = finish_output_pass;
  471. master->pub.is_dummy_pass = FALSE;
  472. master_selection(cinfo);
  473. }