12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574 |
- /*
- * jchuff.c
- *
- * Copyright (C) 1991-1997, Thomas G. Lane.
- * Modified 2006-2013 by Guido Vollbeding.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains Huffman entropy encoding routines.
- * Both sequential and progressive modes are supported in this single module.
- *
- * Much of the complexity here has to do with supporting output suspension.
- * If the data destination module demands suspension, we want to be able to
- * back up to the start of the current MCU. To do this, we copy state
- * variables into local working storage, and update them back to the
- * permanent JPEG objects only upon successful completion of an MCU.
- *
- * We do not support output suspension for the progressive JPEG mode, since
- * the library currently does not allow multiple-scan files to be written
- * with output suspension.
- */
- #define JPEG_INTERNALS
- #include "jinclude.h"
- #include "jpeglib.h"
- /* The legal range of a DCT coefficient is
- * -1024 .. +1023 for 8-bit data;
- * -16384 .. +16383 for 12-bit data.
- * Hence the magnitude should always fit in 10 or 14 bits respectively.
- */
- #if BITS_IN_JSAMPLE == 8
- #define MAX_COEF_BITS 10
- #else
- #define MAX_COEF_BITS 14
- #endif
- /* Derived data constructed for each Huffman table */
- typedef struct {
- unsigned int ehufco[256]; /* code for each symbol */
- char ehufsi[256]; /* length of code for each symbol */
- /* If no code has been allocated for a symbol S, ehufsi[S] contains 0 */
- } c_derived_tbl;
- /* Expanded entropy encoder object for Huffman encoding.
- *
- * The savable_state subrecord contains fields that change within an MCU,
- * but must not be updated permanently until we complete the MCU.
- */
- typedef struct {
- INT32 put_buffer; /* current bit-accumulation buffer */
- int put_bits; /* # of bits now in it */
- int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
- } savable_state;
- /* This macro is to work around compilers with missing or broken
- * structure assignment. You'll need to fix this code if you have
- * such a compiler and you change MAX_COMPS_IN_SCAN.
- */
- #ifndef NO_STRUCT_ASSIGN
- #define ASSIGN_STATE(dest,src) ((dest) = (src))
- #else
- #if MAX_COMPS_IN_SCAN == 4
- #define ASSIGN_STATE(dest,src) \
- ((dest).put_buffer = (src).put_buffer, \
- (dest).put_bits = (src).put_bits, \
- (dest).last_dc_val[0] = (src).last_dc_val[0], \
- (dest).last_dc_val[1] = (src).last_dc_val[1], \
- (dest).last_dc_val[2] = (src).last_dc_val[2], \
- (dest).last_dc_val[3] = (src).last_dc_val[3])
- #endif
- #endif
- typedef struct {
- struct jpeg_entropy_encoder pub; /* public fields */
- savable_state saved; /* Bit buffer & DC state at start of MCU */
- /* These fields are NOT loaded into local working state. */
- unsigned int restarts_to_go; /* MCUs left in this restart interval */
- int next_restart_num; /* next restart number to write (0-7) */
- /* Pointers to derived tables (these workspaces have image lifespan) */
- c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
- c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
- /* Statistics tables for optimization */
- long * dc_count_ptrs[NUM_HUFF_TBLS];
- long * ac_count_ptrs[NUM_HUFF_TBLS];
- /* Following fields used only in progressive mode */
- /* Mode flag: TRUE for optimization, FALSE for actual data output */
- boolean gather_statistics;
- /* next_output_byte/free_in_buffer are local copies of cinfo->dest fields.
- */
- JOCTET * next_output_byte; /* => next byte to write in buffer */
- size_t free_in_buffer; /* # of byte spaces remaining in buffer */
- j_compress_ptr cinfo; /* link to cinfo (needed for dump_buffer) */
- /* Coding status for AC components */
- int ac_tbl_no; /* the table number of the single component */
- unsigned int EOBRUN; /* run length of EOBs */
- unsigned int BE; /* # of buffered correction bits before MCU */
- char * bit_buffer; /* buffer for correction bits (1 per char) */
- /* packing correction bits tightly would save some space but cost time... */
- } huff_entropy_encoder;
- typedef huff_entropy_encoder * huff_entropy_ptr;
- /* Working state while writing an MCU (sequential mode).
- * This struct contains all the fields that are needed by subroutines.
- */
- typedef struct {
- JOCTET * next_output_byte; /* => next byte to write in buffer */
- size_t free_in_buffer; /* # of byte spaces remaining in buffer */
- savable_state cur; /* Current bit buffer & DC state */
- j_compress_ptr cinfo; /* dump_buffer needs access to this */
- } working_state;
- /* MAX_CORR_BITS is the number of bits the AC refinement correction-bit
- * buffer can hold. Larger sizes may slightly improve compression, but
- * 1000 is already well into the realm of overkill.
- * The minimum safe size is 64 bits.
- */
- #define MAX_CORR_BITS 1000 /* Max # of correction bits I can buffer */
- /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
- * We assume that int right shift is unsigned if INT32 right shift is,
- * which should be safe.
- */
- #ifdef RIGHT_SHIFT_IS_UNSIGNED
- #define ISHIFT_TEMPS int ishift_temp;
- #define IRIGHT_SHIFT(x,shft) \
- ((ishift_temp = (x)) < 0 ? \
- (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
- (ishift_temp >> (shft)))
- #else
- #define ISHIFT_TEMPS
- #define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
- #endif
- /*
- * Compute the derived values for a Huffman table.
- * This routine also performs some validation checks on the table.
- */
- LOCAL(void)
- jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,
- c_derived_tbl ** pdtbl)
- {
- JHUFF_TBL *htbl;
- c_derived_tbl *dtbl;
- int p, i, l, lastp, si, maxsymbol;
- char huffsize[257];
- unsigned int huffcode[257];
- unsigned int code;
- /* Note that huffsize[] and huffcode[] are filled in code-length order,
- * paralleling the order of the symbols themselves in htbl->huffval[].
- */
- /* Find the input Huffman table */
- if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
- ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
- htbl =
- isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
- if (htbl == NULL)
- ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
- /* Allocate a workspace if we haven't already done so. */
- if (*pdtbl == NULL)
- *pdtbl = (c_derived_tbl *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(c_derived_tbl));
- dtbl = *pdtbl;
-
- /* Figure C.1: make table of Huffman code length for each symbol */
- p = 0;
- for (l = 1; l <= 16; l++) {
- i = (int) htbl->bits[l];
- if (i < 0 || p + i > 256) /* protect against table overrun */
- ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
- while (i--)
- huffsize[p++] = (char) l;
- }
- huffsize[p] = 0;
- lastp = p;
-
- /* Figure C.2: generate the codes themselves */
- /* We also validate that the counts represent a legal Huffman code tree. */
- code = 0;
- si = huffsize[0];
- p = 0;
- while (huffsize[p]) {
- while (((int) huffsize[p]) == si) {
- huffcode[p++] = code;
- code++;
- }
- /* code is now 1 more than the last code used for codelength si; but
- * it must still fit in si bits, since no code is allowed to be all ones.
- */
- if (((INT32) code) >= (((INT32) 1) << si))
- ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
- code <<= 1;
- si++;
- }
-
- /* Figure C.3: generate encoding tables */
- /* These are code and size indexed by symbol value */
- /* Set all codeless symbols to have code length 0;
- * this lets us detect duplicate VAL entries here, and later
- * allows emit_bits to detect any attempt to emit such symbols.
- */
- MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi));
- /* This is also a convenient place to check for out-of-range
- * and duplicated VAL entries. We allow 0..255 for AC symbols
- * but only 0..15 for DC. (We could constrain them further
- * based on data depth and mode, but this seems enough.)
- */
- maxsymbol = isDC ? 15 : 255;
- for (p = 0; p < lastp; p++) {
- i = htbl->huffval[p];
- if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
- ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
- dtbl->ehufco[i] = huffcode[p];
- dtbl->ehufsi[i] = huffsize[p];
- }
- }
- /* Outputting bytes to the file.
- * NB: these must be called only when actually outputting,
- * that is, entropy->gather_statistics == FALSE.
- */
- /* Emit a byte, taking 'action' if must suspend. */
- #define emit_byte_s(state,val,action) \
- { *(state)->next_output_byte++ = (JOCTET) (val); \
- if (--(state)->free_in_buffer == 0) \
- if (! dump_buffer_s(state)) \
- { action; } }
- /* Emit a byte */
- #define emit_byte_e(entropy,val) \
- { *(entropy)->next_output_byte++ = (JOCTET) (val); \
- if (--(entropy)->free_in_buffer == 0) \
- dump_buffer_e(entropy); }
- LOCAL(boolean)
- dump_buffer_s (working_state * state)
- /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
- {
- struct jpeg_destination_mgr * dest = state->cinfo->dest;
- if (! (*dest->empty_output_buffer) (state->cinfo))
- return FALSE;
- /* After a successful buffer dump, must reset buffer pointers */
- state->next_output_byte = dest->next_output_byte;
- state->free_in_buffer = dest->free_in_buffer;
- return TRUE;
- }
- LOCAL(void)
- dump_buffer_e (huff_entropy_ptr entropy)
- /* Empty the output buffer; we do not support suspension in this case. */
- {
- struct jpeg_destination_mgr * dest = entropy->cinfo->dest;
- if (! (*dest->empty_output_buffer) (entropy->cinfo))
- ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND);
- /* After a successful buffer dump, must reset buffer pointers */
- entropy->next_output_byte = dest->next_output_byte;
- entropy->free_in_buffer = dest->free_in_buffer;
- }
- /* Outputting bits to the file */
- /* Only the right 24 bits of put_buffer are used; the valid bits are
- * left-justified in this part. At most 16 bits can be passed to emit_bits
- * in one call, and we never retain more than 7 bits in put_buffer
- * between calls, so 24 bits are sufficient.
- */
- INLINE
- LOCAL(boolean)
- emit_bits_s (working_state * state, unsigned int code, int size)
- /* Emit some bits; return TRUE if successful, FALSE if must suspend */
- {
- /* This routine is heavily used, so it's worth coding tightly. */
- register INT32 put_buffer;
- register int put_bits;
- /* if size is 0, caller used an invalid Huffman table entry */
- if (size == 0)
- ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE);
- /* mask off any extra bits in code */
- put_buffer = ((INT32) code) & ((((INT32) 1) << size) - 1);
- /* new number of bits in buffer */
- put_bits = size + state->cur.put_bits;
- put_buffer <<= 24 - put_bits; /* align incoming bits */
- /* and merge with old buffer contents */
- put_buffer |= state->cur.put_buffer;
- while (put_bits >= 8) {
- int c = (int) ((put_buffer >> 16) & 0xFF);
- emit_byte_s(state, c, return FALSE);
- if (c == 0xFF) { /* need to stuff a zero byte? */
- emit_byte_s(state, 0, return FALSE);
- }
- put_buffer <<= 8;
- put_bits -= 8;
- }
- state->cur.put_buffer = put_buffer; /* update state variables */
- state->cur.put_bits = put_bits;
- return TRUE;
- }
- INLINE
- LOCAL(void)
- emit_bits_e (huff_entropy_ptr entropy, unsigned int code, int size)
- /* Emit some bits, unless we are in gather mode */
- {
- /* This routine is heavily used, so it's worth coding tightly. */
- register INT32 put_buffer;
- register int put_bits;
- /* if size is 0, caller used an invalid Huffman table entry */
- if (size == 0)
- ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
- if (entropy->gather_statistics)
- return; /* do nothing if we're only getting stats */
- /* mask off any extra bits in code */
- put_buffer = ((INT32) code) & ((((INT32) 1) << size) - 1);
- /* new number of bits in buffer */
- put_bits = size + entropy->saved.put_bits;
- put_buffer <<= 24 - put_bits; /* align incoming bits */
- /* and merge with old buffer contents */
- put_buffer |= entropy->saved.put_buffer;
- while (put_bits >= 8) {
- int c = (int) ((put_buffer >> 16) & 0xFF);
- emit_byte_e(entropy, c);
- if (c == 0xFF) { /* need to stuff a zero byte? */
- emit_byte_e(entropy, 0);
- }
- put_buffer <<= 8;
- put_bits -= 8;
- }
- entropy->saved.put_buffer = put_buffer; /* update variables */
- entropy->saved.put_bits = put_bits;
- }
- LOCAL(boolean)
- flush_bits_s (working_state * state)
- {
- if (! emit_bits_s(state, 0x7F, 7)) /* fill any partial byte with ones */
- return FALSE;
- state->cur.put_buffer = 0; /* and reset bit-buffer to empty */
- state->cur.put_bits = 0;
- return TRUE;
- }
- LOCAL(void)
- flush_bits_e (huff_entropy_ptr entropy)
- {
- emit_bits_e(entropy, 0x7F, 7); /* fill any partial byte with ones */
- entropy->saved.put_buffer = 0; /* and reset bit-buffer to empty */
- entropy->saved.put_bits = 0;
- }
- /*
- * Emit (or just count) a Huffman symbol.
- */
- INLINE
- LOCAL(void)
- emit_dc_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol)
- {
- if (entropy->gather_statistics)
- entropy->dc_count_ptrs[tbl_no][symbol]++;
- else {
- c_derived_tbl * tbl = entropy->dc_derived_tbls[tbl_no];
- emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
- }
- }
- INLINE
- LOCAL(void)
- emit_ac_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol)
- {
- if (entropy->gather_statistics)
- entropy->ac_count_ptrs[tbl_no][symbol]++;
- else {
- c_derived_tbl * tbl = entropy->ac_derived_tbls[tbl_no];
- emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
- }
- }
- /*
- * Emit bits from a correction bit buffer.
- */
- LOCAL(void)
- emit_buffered_bits (huff_entropy_ptr entropy, char * bufstart,
- unsigned int nbits)
- {
- if (entropy->gather_statistics)
- return; /* no real work */
- while (nbits > 0) {
- emit_bits_e(entropy, (unsigned int) (*bufstart), 1);
- bufstart++;
- nbits--;
- }
- }
- /*
- * Emit any pending EOBRUN symbol.
- */
- LOCAL(void)
- emit_eobrun (huff_entropy_ptr entropy)
- {
- register int temp, nbits;
- if (entropy->EOBRUN > 0) { /* if there is any pending EOBRUN */
- temp = entropy->EOBRUN;
- nbits = 0;
- while ((temp >>= 1))
- nbits++;
- /* safety check: shouldn't happen given limited correction-bit buffer */
- if (nbits > 14)
- ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
- emit_ac_symbol(entropy, entropy->ac_tbl_no, nbits << 4);
- if (nbits)
- emit_bits_e(entropy, entropy->EOBRUN, nbits);
- entropy->EOBRUN = 0;
- /* Emit any buffered correction bits */
- emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE);
- entropy->BE = 0;
- }
- }
- /*
- * Emit a restart marker & resynchronize predictions.
- */
- LOCAL(boolean)
- emit_restart_s (working_state * state, int restart_num)
- {
- int ci;
- if (! flush_bits_s(state))
- return FALSE;
- emit_byte_s(state, 0xFF, return FALSE);
- emit_byte_s(state, JPEG_RST0 + restart_num, return FALSE);
- /* Re-initialize DC predictions to 0 */
- for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
- state->cur.last_dc_val[ci] = 0;
- /* The restart counter is not updated until we successfully write the MCU. */
- return TRUE;
- }
- LOCAL(void)
- emit_restart_e (huff_entropy_ptr entropy, int restart_num)
- {
- int ci;
- emit_eobrun(entropy);
- if (! entropy->gather_statistics) {
- flush_bits_e(entropy);
- emit_byte_e(entropy, 0xFF);
- emit_byte_e(entropy, JPEG_RST0 + restart_num);
- }
- if (entropy->cinfo->Ss == 0) {
- /* Re-initialize DC predictions to 0 */
- for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++)
- entropy->saved.last_dc_val[ci] = 0;
- } else {
- /* Re-initialize all AC-related fields to 0 */
- entropy->EOBRUN = 0;
- entropy->BE = 0;
- }
- }
- /*
- * MCU encoding for DC initial scan (either spectral selection,
- * or first pass of successive approximation).
- */
- METHODDEF(boolean)
- encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
- {
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- register int temp, temp2;
- register int nbits;
- int blkn, ci, tbl;
- ISHIFT_TEMPS
- entropy->next_output_byte = cinfo->dest->next_output_byte;
- entropy->free_in_buffer = cinfo->dest->free_in_buffer;
- /* Emit restart marker if needed */
- if (cinfo->restart_interval)
- if (entropy->restarts_to_go == 0)
- emit_restart_e(entropy, entropy->next_restart_num);
- /* Encode the MCU data blocks */
- for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
- ci = cinfo->MCU_membership[blkn];
- tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
- /* Compute the DC value after the required point transform by Al.
- * This is simply an arithmetic right shift.
- */
- temp = IRIGHT_SHIFT((int) (MCU_data[blkn][0][0]), cinfo->Al);
- /* DC differences are figured on the point-transformed values. */
- temp2 = temp - entropy->saved.last_dc_val[ci];
- entropy->saved.last_dc_val[ci] = temp;
- /* Encode the DC coefficient difference per section G.1.2.1 */
- temp = temp2;
- if (temp < 0) {
- temp = -temp; /* temp is abs value of input */
- /* For a negative input, want temp2 = bitwise complement of abs(input) */
- /* This code assumes we are on a two's complement machine */
- temp2--;
- }
- /* Find the number of bits needed for the magnitude of the coefficient */
- nbits = 0;
- while (temp) {
- nbits++;
- temp >>= 1;
- }
- /* Check for out-of-range coefficient values.
- * Since we're encoding a difference, the range limit is twice as much.
- */
- if (nbits > MAX_COEF_BITS+1)
- ERREXIT(cinfo, JERR_BAD_DCT_COEF);
- /* Count/emit the Huffman-coded symbol for the number of bits */
- emit_dc_symbol(entropy, tbl, nbits);
- /* Emit that number of bits of the value, if positive, */
- /* or the complement of its magnitude, if negative. */
- if (nbits) /* emit_bits rejects calls with size 0 */
- emit_bits_e(entropy, (unsigned int) temp2, nbits);
- }
- cinfo->dest->next_output_byte = entropy->next_output_byte;
- cinfo->dest->free_in_buffer = entropy->free_in_buffer;
- /* Update restart-interval state too */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0) {
- entropy->restarts_to_go = cinfo->restart_interval;
- entropy->next_restart_num++;
- entropy->next_restart_num &= 7;
- }
- entropy->restarts_to_go--;
- }
- return TRUE;
- }
- /*
- * MCU encoding for AC initial scan (either spectral selection,
- * or first pass of successive approximation).
- */
- METHODDEF(boolean)
- encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
- {
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- const int * natural_order;
- JBLOCKROW block;
- register int temp, temp2;
- register int nbits;
- register int r, k;
- int Se, Al;
- entropy->next_output_byte = cinfo->dest->next_output_byte;
- entropy->free_in_buffer = cinfo->dest->free_in_buffer;
- /* Emit restart marker if needed */
- if (cinfo->restart_interval)
- if (entropy->restarts_to_go == 0)
- emit_restart_e(entropy, entropy->next_restart_num);
- Se = cinfo->Se;
- Al = cinfo->Al;
- natural_order = cinfo->natural_order;
- /* Encode the MCU data block */
- block = MCU_data[0];
- /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */
-
- r = 0; /* r = run length of zeros */
-
- for (k = cinfo->Ss; k <= Se; k++) {
- if ((temp = (*block)[natural_order[k]]) == 0) {
- r++;
- continue;
- }
- /* We must apply the point transform by Al. For AC coefficients this
- * is an integer division with rounding towards 0. To do this portably
- * in C, we shift after obtaining the absolute value; so the code is
- * interwoven with finding the abs value (temp) and output bits (temp2).
- */
- if (temp < 0) {
- temp = -temp; /* temp is abs value of input */
- temp >>= Al; /* apply the point transform */
- /* For a negative coef, want temp2 = bitwise complement of abs(coef) */
- temp2 = ~temp;
- } else {
- temp >>= Al; /* apply the point transform */
- temp2 = temp;
- }
- /* Watch out for case that nonzero coef is zero after point transform */
- if (temp == 0) {
- r++;
- continue;
- }
- /* Emit any pending EOBRUN */
- if (entropy->EOBRUN > 0)
- emit_eobrun(entropy);
- /* if run length > 15, must emit special run-length-16 codes (0xF0) */
- while (r > 15) {
- emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0);
- r -= 16;
- }
- /* Find the number of bits needed for the magnitude of the coefficient */
- nbits = 1; /* there must be at least one 1 bit */
- while ((temp >>= 1))
- nbits++;
- /* Check for out-of-range coefficient values */
- if (nbits > MAX_COEF_BITS)
- ERREXIT(cinfo, JERR_BAD_DCT_COEF);
- /* Count/emit Huffman symbol for run length / number of bits */
- emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits);
- /* Emit that number of bits of the value, if positive, */
- /* or the complement of its magnitude, if negative. */
- emit_bits_e(entropy, (unsigned int) temp2, nbits);
- r = 0; /* reset zero run length */
- }
- if (r > 0) { /* If there are trailing zeroes, */
- entropy->EOBRUN++; /* count an EOB */
- if (entropy->EOBRUN == 0x7FFF)
- emit_eobrun(entropy); /* force it out to avoid overflow */
- }
- cinfo->dest->next_output_byte = entropy->next_output_byte;
- cinfo->dest->free_in_buffer = entropy->free_in_buffer;
- /* Update restart-interval state too */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0) {
- entropy->restarts_to_go = cinfo->restart_interval;
- entropy->next_restart_num++;
- entropy->next_restart_num &= 7;
- }
- entropy->restarts_to_go--;
- }
- return TRUE;
- }
- /*
- * MCU encoding for DC successive approximation refinement scan.
- * Note: we assume such scans can be multi-component,
- * although the spec is not very clear on the point.
- */
- METHODDEF(boolean)
- encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
- {
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- int Al, blkn;
- entropy->next_output_byte = cinfo->dest->next_output_byte;
- entropy->free_in_buffer = cinfo->dest->free_in_buffer;
- /* Emit restart marker if needed */
- if (cinfo->restart_interval)
- if (entropy->restarts_to_go == 0)
- emit_restart_e(entropy, entropy->next_restart_num);
- Al = cinfo->Al;
- /* Encode the MCU data blocks */
- for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
- /* We simply emit the Al'th bit of the DC coefficient value. */
- emit_bits_e(entropy, (unsigned int) (MCU_data[blkn][0][0] >> Al), 1);
- }
- cinfo->dest->next_output_byte = entropy->next_output_byte;
- cinfo->dest->free_in_buffer = entropy->free_in_buffer;
- /* Update restart-interval state too */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0) {
- entropy->restarts_to_go = cinfo->restart_interval;
- entropy->next_restart_num++;
- entropy->next_restart_num &= 7;
- }
- entropy->restarts_to_go--;
- }
- return TRUE;
- }
- /*
- * MCU encoding for AC successive approximation refinement scan.
- */
- METHODDEF(boolean)
- encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
- {
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- const int * natural_order;
- JBLOCKROW block;
- register int temp;
- register int r, k;
- int Se, Al;
- int EOB;
- char *BR_buffer;
- unsigned int BR;
- int absvalues[DCTSIZE2];
- entropy->next_output_byte = cinfo->dest->next_output_byte;
- entropy->free_in_buffer = cinfo->dest->free_in_buffer;
- /* Emit restart marker if needed */
- if (cinfo->restart_interval)
- if (entropy->restarts_to_go == 0)
- emit_restart_e(entropy, entropy->next_restart_num);
- Se = cinfo->Se;
- Al = cinfo->Al;
- natural_order = cinfo->natural_order;
- /* Encode the MCU data block */
- block = MCU_data[0];
- /* It is convenient to make a pre-pass to determine the transformed
- * coefficients' absolute values and the EOB position.
- */
- EOB = 0;
- for (k = cinfo->Ss; k <= Se; k++) {
- temp = (*block)[natural_order[k]];
- /* We must apply the point transform by Al. For AC coefficients this
- * is an integer division with rounding towards 0. To do this portably
- * in C, we shift after obtaining the absolute value.
- */
- if (temp < 0)
- temp = -temp; /* temp is abs value of input */
- temp >>= Al; /* apply the point transform */
- absvalues[k] = temp; /* save abs value for main pass */
- if (temp == 1)
- EOB = k; /* EOB = index of last newly-nonzero coef */
- }
- /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */
-
- r = 0; /* r = run length of zeros */
- BR = 0; /* BR = count of buffered bits added now */
- BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */
- for (k = cinfo->Ss; k <= Se; k++) {
- if ((temp = absvalues[k]) == 0) {
- r++;
- continue;
- }
- /* Emit any required ZRLs, but not if they can be folded into EOB */
- while (r > 15 && k <= EOB) {
- /* emit any pending EOBRUN and the BE correction bits */
- emit_eobrun(entropy);
- /* Emit ZRL */
- emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0);
- r -= 16;
- /* Emit buffered correction bits that must be associated with ZRL */
- emit_buffered_bits(entropy, BR_buffer, BR);
- BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
- BR = 0;
- }
- /* If the coef was previously nonzero, it only needs a correction bit.
- * NOTE: a straight translation of the spec's figure G.7 would suggest
- * that we also need to test r > 15. But if r > 15, we can only get here
- * if k > EOB, which implies that this coefficient is not 1.
- */
- if (temp > 1) {
- /* The correction bit is the next bit of the absolute value. */
- BR_buffer[BR++] = (char) (temp & 1);
- continue;
- }
- /* Emit any pending EOBRUN and the BE correction bits */
- emit_eobrun(entropy);
- /* Count/emit Huffman symbol for run length / number of bits */
- emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1);
- /* Emit output bit for newly-nonzero coef */
- temp = ((*block)[natural_order[k]] < 0) ? 0 : 1;
- emit_bits_e(entropy, (unsigned int) temp, 1);
- /* Emit buffered correction bits that must be associated with this code */
- emit_buffered_bits(entropy, BR_buffer, BR);
- BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
- BR = 0;
- r = 0; /* reset zero run length */
- }
- if (r > 0 || BR > 0) { /* If there are trailing zeroes, */
- entropy->EOBRUN++; /* count an EOB */
- entropy->BE += BR; /* concat my correction bits to older ones */
- /* We force out the EOB if we risk either:
- * 1. overflow of the EOB counter;
- * 2. overflow of the correction bit buffer during the next MCU.
- */
- if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1))
- emit_eobrun(entropy);
- }
- cinfo->dest->next_output_byte = entropy->next_output_byte;
- cinfo->dest->free_in_buffer = entropy->free_in_buffer;
- /* Update restart-interval state too */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0) {
- entropy->restarts_to_go = cinfo->restart_interval;
- entropy->next_restart_num++;
- entropy->next_restart_num &= 7;
- }
- entropy->restarts_to_go--;
- }
- return TRUE;
- }
- /* Encode a single block's worth of coefficients */
- LOCAL(boolean)
- encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
- c_derived_tbl *dctbl, c_derived_tbl *actbl)
- {
- register int temp, temp2;
- register int nbits;
- register int r, k;
- int Se = state->cinfo->lim_Se;
- const int * natural_order = state->cinfo->natural_order;
- /* Encode the DC coefficient difference per section F.1.2.1 */
- temp = temp2 = block[0] - last_dc_val;
- if (temp < 0) {
- temp = -temp; /* temp is abs value of input */
- /* For a negative input, want temp2 = bitwise complement of abs(input) */
- /* This code assumes we are on a two's complement machine */
- temp2--;
- }
- /* Find the number of bits needed for the magnitude of the coefficient */
- nbits = 0;
- while (temp) {
- nbits++;
- temp >>= 1;
- }
- /* Check for out-of-range coefficient values.
- * Since we're encoding a difference, the range limit is twice as much.
- */
- if (nbits > MAX_COEF_BITS+1)
- ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
- /* Emit the Huffman-coded symbol for the number of bits */
- if (! emit_bits_s(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits]))
- return FALSE;
- /* Emit that number of bits of the value, if positive, */
- /* or the complement of its magnitude, if negative. */
- if (nbits) /* emit_bits rejects calls with size 0 */
- if (! emit_bits_s(state, (unsigned int) temp2, nbits))
- return FALSE;
- /* Encode the AC coefficients per section F.1.2.2 */
- r = 0; /* r = run length of zeros */
- for (k = 1; k <= Se; k++) {
- if ((temp2 = block[natural_order[k]]) == 0) {
- r++;
- } else {
- /* if run length > 15, must emit special run-length-16 codes (0xF0) */
- while (r > 15) {
- if (! emit_bits_s(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0]))
- return FALSE;
- r -= 16;
- }
- temp = temp2;
- if (temp < 0) {
- temp = -temp; /* temp is abs value of input */
- /* This code assumes we are on a two's complement machine */
- temp2--;
- }
- /* Find the number of bits needed for the magnitude of the coefficient */
- nbits = 1; /* there must be at least one 1 bit */
- while ((temp >>= 1))
- nbits++;
- /* Check for out-of-range coefficient values */
- if (nbits > MAX_COEF_BITS)
- ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
- /* Emit Huffman symbol for run length / number of bits */
- temp = (r << 4) + nbits;
- if (! emit_bits_s(state, actbl->ehufco[temp], actbl->ehufsi[temp]))
- return FALSE;
- /* Emit that number of bits of the value, if positive, */
- /* or the complement of its magnitude, if negative. */
- if (! emit_bits_s(state, (unsigned int) temp2, nbits))
- return FALSE;
- r = 0;
- }
- }
- /* If the last coef(s) were zero, emit an end-of-block code */
- if (r > 0)
- if (! emit_bits_s(state, actbl->ehufco[0], actbl->ehufsi[0]))
- return FALSE;
- return TRUE;
- }
- /*
- * Encode and output one MCU's worth of Huffman-compressed coefficients.
- */
- METHODDEF(boolean)
- encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
- {
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- working_state state;
- int blkn, ci;
- jpeg_component_info * compptr;
- /* Load up working state */
- state.next_output_byte = cinfo->dest->next_output_byte;
- state.free_in_buffer = cinfo->dest->free_in_buffer;
- ASSIGN_STATE(state.cur, entropy->saved);
- state.cinfo = cinfo;
- /* Emit restart marker if needed */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0)
- if (! emit_restart_s(&state, entropy->next_restart_num))
- return FALSE;
- }
- /* Encode the MCU data blocks */
- for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
- ci = cinfo->MCU_membership[blkn];
- compptr = cinfo->cur_comp_info[ci];
- if (! encode_one_block(&state,
- MCU_data[blkn][0], state.cur.last_dc_val[ci],
- entropy->dc_derived_tbls[compptr->dc_tbl_no],
- entropy->ac_derived_tbls[compptr->ac_tbl_no]))
- return FALSE;
- /* Update last_dc_val */
- state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
- }
- /* Completed MCU, so update state */
- cinfo->dest->next_output_byte = state.next_output_byte;
- cinfo->dest->free_in_buffer = state.free_in_buffer;
- ASSIGN_STATE(entropy->saved, state.cur);
- /* Update restart-interval state too */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0) {
- entropy->restarts_to_go = cinfo->restart_interval;
- entropy->next_restart_num++;
- entropy->next_restart_num &= 7;
- }
- entropy->restarts_to_go--;
- }
- return TRUE;
- }
- /*
- * Finish up at the end of a Huffman-compressed scan.
- */
- METHODDEF(void)
- finish_pass_huff (j_compress_ptr cinfo)
- {
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- working_state state;
- if (cinfo->progressive_mode) {
- entropy->next_output_byte = cinfo->dest->next_output_byte;
- entropy->free_in_buffer = cinfo->dest->free_in_buffer;
- /* Flush out any buffered data */
- emit_eobrun(entropy);
- flush_bits_e(entropy);
- cinfo->dest->next_output_byte = entropy->next_output_byte;
- cinfo->dest->free_in_buffer = entropy->free_in_buffer;
- } else {
- /* Load up working state ... flush_bits needs it */
- state.next_output_byte = cinfo->dest->next_output_byte;
- state.free_in_buffer = cinfo->dest->free_in_buffer;
- ASSIGN_STATE(state.cur, entropy->saved);
- state.cinfo = cinfo;
- /* Flush out the last data */
- if (! flush_bits_s(&state))
- ERREXIT(cinfo, JERR_CANT_SUSPEND);
- /* Update state */
- cinfo->dest->next_output_byte = state.next_output_byte;
- cinfo->dest->free_in_buffer = state.free_in_buffer;
- ASSIGN_STATE(entropy->saved, state.cur);
- }
- }
- /*
- * Huffman coding optimization.
- *
- * We first scan the supplied data and count the number of uses of each symbol
- * that is to be Huffman-coded. (This process MUST agree with the code above.)
- * Then we build a Huffman coding tree for the observed counts.
- * Symbols which are not needed at all for the particular image are not
- * assigned any code, which saves space in the DHT marker as well as in
- * the compressed data.
- */
- /* Process a single block's worth of coefficients */
- LOCAL(void)
- htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
- long dc_counts[], long ac_counts[])
- {
- register int temp;
- register int nbits;
- register int r, k;
- int Se = cinfo->lim_Se;
- const int * natural_order = cinfo->natural_order;
- /* Encode the DC coefficient difference per section F.1.2.1 */
- temp = block[0] - last_dc_val;
- if (temp < 0)
- temp = -temp;
- /* Find the number of bits needed for the magnitude of the coefficient */
- nbits = 0;
- while (temp) {
- nbits++;
- temp >>= 1;
- }
- /* Check for out-of-range coefficient values.
- * Since we're encoding a difference, the range limit is twice as much.
- */
- if (nbits > MAX_COEF_BITS+1)
- ERREXIT(cinfo, JERR_BAD_DCT_COEF);
- /* Count the Huffman symbol for the number of bits */
- dc_counts[nbits]++;
- /* Encode the AC coefficients per section F.1.2.2 */
- r = 0; /* r = run length of zeros */
- for (k = 1; k <= Se; k++) {
- if ((temp = block[natural_order[k]]) == 0) {
- r++;
- } else {
- /* if run length > 15, must emit special run-length-16 codes (0xF0) */
- while (r > 15) {
- ac_counts[0xF0]++;
- r -= 16;
- }
- /* Find the number of bits needed for the magnitude of the coefficient */
- if (temp < 0)
- temp = -temp;
- /* Find the number of bits needed for the magnitude of the coefficient */
- nbits = 1; /* there must be at least one 1 bit */
- while ((temp >>= 1))
- nbits++;
- /* Check for out-of-range coefficient values */
- if (nbits > MAX_COEF_BITS)
- ERREXIT(cinfo, JERR_BAD_DCT_COEF);
- /* Count Huffman symbol for run length / number of bits */
- ac_counts[(r << 4) + nbits]++;
- r = 0;
- }
- }
- /* If the last coef(s) were zero, emit an end-of-block code */
- if (r > 0)
- ac_counts[0]++;
- }
- /*
- * Trial-encode one MCU's worth of Huffman-compressed coefficients.
- * No data is actually output, so no suspension return is possible.
- */
- METHODDEF(boolean)
- encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
- {
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- int blkn, ci;
- jpeg_component_info * compptr;
- /* Take care of restart intervals if needed */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0) {
- /* Re-initialize DC predictions to 0 */
- for (ci = 0; ci < cinfo->comps_in_scan; ci++)
- entropy->saved.last_dc_val[ci] = 0;
- /* Update restart state */
- entropy->restarts_to_go = cinfo->restart_interval;
- }
- entropy->restarts_to_go--;
- }
- for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
- ci = cinfo->MCU_membership[blkn];
- compptr = cinfo->cur_comp_info[ci];
- htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
- entropy->dc_count_ptrs[compptr->dc_tbl_no],
- entropy->ac_count_ptrs[compptr->ac_tbl_no]);
- entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
- }
- return TRUE;
- }
- /*
- * Generate the best Huffman code table for the given counts, fill htbl.
- *
- * The JPEG standard requires that no symbol be assigned a codeword of all
- * one bits (so that padding bits added at the end of a compressed segment
- * can't look like a valid code). Because of the canonical ordering of
- * codewords, this just means that there must be an unused slot in the
- * longest codeword length category. Section K.2 of the JPEG spec suggests
- * reserving such a slot by pretending that symbol 256 is a valid symbol
- * with count 1. In theory that's not optimal; giving it count zero but
- * including it in the symbol set anyway should give a better Huffman code.
- * But the theoretically better code actually seems to come out worse in
- * practice, because it produces more all-ones bytes (which incur stuffed
- * zero bytes in the final file). In any case the difference is tiny.
- *
- * The JPEG standard requires Huffman codes to be no more than 16 bits long.
- * If some symbols have a very small but nonzero probability, the Huffman tree
- * must be adjusted to meet the code length restriction. We currently use
- * the adjustment method suggested in JPEG section K.2. This method is *not*
- * optimal; it may not choose the best possible limited-length code. But
- * typically only very-low-frequency symbols will be given less-than-optimal
- * lengths, so the code is almost optimal. Experimental comparisons against
- * an optimal limited-length-code algorithm indicate that the difference is
- * microscopic --- usually less than a hundredth of a percent of total size.
- * So the extra complexity of an optimal algorithm doesn't seem worthwhile.
- */
- LOCAL(void)
- jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[])
- {
- #define MAX_CLEN 32 /* assumed maximum initial code length */
- UINT8 bits[MAX_CLEN+1]; /* bits[k] = # of symbols with code length k */
- int codesize[257]; /* codesize[k] = code length of symbol k */
- int others[257]; /* next symbol in current branch of tree */
- int c1, c2;
- int p, i, j;
- long v;
- /* This algorithm is explained in section K.2 of the JPEG standard */
- MEMZERO(bits, SIZEOF(bits));
- MEMZERO(codesize, SIZEOF(codesize));
- for (i = 0; i < 257; i++)
- others[i] = -1; /* init links to empty */
-
- freq[256] = 1; /* make sure 256 has a nonzero count */
- /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
- * that no real symbol is given code-value of all ones, because 256
- * will be placed last in the largest codeword category.
- */
- /* Huffman's basic algorithm to assign optimal code lengths to symbols */
- for (;;) {
- /* Find the smallest nonzero frequency, set c1 = its symbol */
- /* In case of ties, take the larger symbol number */
- c1 = -1;
- v = 1000000000L;
- for (i = 0; i <= 256; i++) {
- if (freq[i] && freq[i] <= v) {
- v = freq[i];
- c1 = i;
- }
- }
- /* Find the next smallest nonzero frequency, set c2 = its symbol */
- /* In case of ties, take the larger symbol number */
- c2 = -1;
- v = 1000000000L;
- for (i = 0; i <= 256; i++) {
- if (freq[i] && freq[i] <= v && i != c1) {
- v = freq[i];
- c2 = i;
- }
- }
- /* Done if we've merged everything into one frequency */
- if (c2 < 0)
- break;
-
- /* Else merge the two counts/trees */
- freq[c1] += freq[c2];
- freq[c2] = 0;
- /* Increment the codesize of everything in c1's tree branch */
- codesize[c1]++;
- while (others[c1] >= 0) {
- c1 = others[c1];
- codesize[c1]++;
- }
-
- others[c1] = c2; /* chain c2 onto c1's tree branch */
-
- /* Increment the codesize of everything in c2's tree branch */
- codesize[c2]++;
- while (others[c2] >= 0) {
- c2 = others[c2];
- codesize[c2]++;
- }
- }
- /* Now count the number of symbols of each code length */
- for (i = 0; i <= 256; i++) {
- if (codesize[i]) {
- /* The JPEG standard seems to think that this can't happen, */
- /* but I'm paranoid... */
- if (codesize[i] > MAX_CLEN)
- ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
- bits[codesize[i]]++;
- }
- }
- /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
- * Huffman procedure assigned any such lengths, we must adjust the coding.
- * Here is what the JPEG spec says about how this next bit works:
- * Since symbols are paired for the longest Huffman code, the symbols are
- * removed from this length category two at a time. The prefix for the pair
- * (which is one bit shorter) is allocated to one of the pair; then,
- * skipping the BITS entry for that prefix length, a code word from the next
- * shortest nonzero BITS entry is converted into a prefix for two code words
- * one bit longer.
- */
-
- for (i = MAX_CLEN; i > 16; i--) {
- while (bits[i] > 0) {
- j = i - 2; /* find length of new prefix to be used */
- while (bits[j] == 0)
- j--;
-
- bits[i] -= 2; /* remove two symbols */
- bits[i-1]++; /* one goes in this length */
- bits[j+1] += 2; /* two new symbols in this length */
- bits[j]--; /* symbol of this length is now a prefix */
- }
- }
- /* Remove the count for the pseudo-symbol 256 from the largest codelength */
- while (bits[i] == 0) /* find largest codelength still in use */
- i--;
- bits[i]--;
-
- /* Return final symbol counts (only for lengths 0..16) */
- MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits));
-
- /* Return a list of the symbols sorted by code length */
- /* It's not real clear to me why we don't need to consider the codelength
- * changes made above, but the JPEG spec seems to think this works.
- */
- p = 0;
- for (i = 1; i <= MAX_CLEN; i++) {
- for (j = 0; j <= 255; j++) {
- if (codesize[j] == i) {
- htbl->huffval[p] = (UINT8) j;
- p++;
- }
- }
- }
- /* Set sent_table FALSE so updated table will be written to JPEG file. */
- htbl->sent_table = FALSE;
- }
- /*
- * Finish up a statistics-gathering pass and create the new Huffman tables.
- */
- METHODDEF(void)
- finish_pass_gather (j_compress_ptr cinfo)
- {
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- int ci, tbl;
- jpeg_component_info * compptr;
- JHUFF_TBL **htblptr;
- boolean did_dc[NUM_HUFF_TBLS];
- boolean did_ac[NUM_HUFF_TBLS];
- /* It's important not to apply jpeg_gen_optimal_table more than once
- * per table, because it clobbers the input frequency counts!
- */
- if (cinfo->progressive_mode)
- /* Flush out buffered data (all we care about is counting the EOB symbol) */
- emit_eobrun(entropy);
- MEMZERO(did_dc, SIZEOF(did_dc));
- MEMZERO(did_ac, SIZEOF(did_ac));
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- /* DC needs no table for refinement scan */
- if (cinfo->Ss == 0 && cinfo->Ah == 0) {
- tbl = compptr->dc_tbl_no;
- if (! did_dc[tbl]) {
- htblptr = & cinfo->dc_huff_tbl_ptrs[tbl];
- if (*htblptr == NULL)
- *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
- jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[tbl]);
- did_dc[tbl] = TRUE;
- }
- }
- /* AC needs no table when not present */
- if (cinfo->Se) {
- tbl = compptr->ac_tbl_no;
- if (! did_ac[tbl]) {
- htblptr = & cinfo->ac_huff_tbl_ptrs[tbl];
- if (*htblptr == NULL)
- *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
- jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[tbl]);
- did_ac[tbl] = TRUE;
- }
- }
- }
- }
- /*
- * Initialize for a Huffman-compressed scan.
- * If gather_statistics is TRUE, we do not output anything during the scan,
- * just count the Huffman symbols used and generate Huffman code tables.
- */
- METHODDEF(void)
- start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
- {
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- int ci, tbl;
- jpeg_component_info * compptr;
- if (gather_statistics)
- entropy->pub.finish_pass = finish_pass_gather;
- else
- entropy->pub.finish_pass = finish_pass_huff;
- if (cinfo->progressive_mode) {
- entropy->cinfo = cinfo;
- entropy->gather_statistics = gather_statistics;
- /* We assume jcmaster.c already validated the scan parameters. */
- /* Select execution routine */
- if (cinfo->Ah == 0) {
- if (cinfo->Ss == 0)
- entropy->pub.encode_mcu = encode_mcu_DC_first;
- else
- entropy->pub.encode_mcu = encode_mcu_AC_first;
- } else {
- if (cinfo->Ss == 0)
- entropy->pub.encode_mcu = encode_mcu_DC_refine;
- else {
- entropy->pub.encode_mcu = encode_mcu_AC_refine;
- /* AC refinement needs a correction bit buffer */
- if (entropy->bit_buffer == NULL)
- entropy->bit_buffer = (char *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- MAX_CORR_BITS * SIZEOF(char));
- }
- }
- /* Initialize AC stuff */
- entropy->ac_tbl_no = cinfo->cur_comp_info[0]->ac_tbl_no;
- entropy->EOBRUN = 0;
- entropy->BE = 0;
- } else {
- if (gather_statistics)
- entropy->pub.encode_mcu = encode_mcu_gather;
- else
- entropy->pub.encode_mcu = encode_mcu_huff;
- }
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- /* DC needs no table for refinement scan */
- if (cinfo->Ss == 0 && cinfo->Ah == 0) {
- tbl = compptr->dc_tbl_no;
- if (gather_statistics) {
- /* Check for invalid table index */
- /* (make_c_derived_tbl does this in the other path) */
- if (tbl < 0 || tbl >= NUM_HUFF_TBLS)
- ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl);
- /* Allocate and zero the statistics tables */
- /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
- if (entropy->dc_count_ptrs[tbl] == NULL)
- entropy->dc_count_ptrs[tbl] = (long *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- 257 * SIZEOF(long));
- MEMZERO(entropy->dc_count_ptrs[tbl], 257 * SIZEOF(long));
- } else {
- /* Compute derived values for Huffman tables */
- /* We may do this more than once for a table, but it's not expensive */
- jpeg_make_c_derived_tbl(cinfo, TRUE, tbl,
- & entropy->dc_derived_tbls[tbl]);
- }
- /* Initialize DC predictions to 0 */
- entropy->saved.last_dc_val[ci] = 0;
- }
- /* AC needs no table when not present */
- if (cinfo->Se) {
- tbl = compptr->ac_tbl_no;
- if (gather_statistics) {
- if (tbl < 0 || tbl >= NUM_HUFF_TBLS)
- ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl);
- if (entropy->ac_count_ptrs[tbl] == NULL)
- entropy->ac_count_ptrs[tbl] = (long *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- 257 * SIZEOF(long));
- MEMZERO(entropy->ac_count_ptrs[tbl], 257 * SIZEOF(long));
- } else {
- jpeg_make_c_derived_tbl(cinfo, FALSE, tbl,
- & entropy->ac_derived_tbls[tbl]);
- }
- }
- }
- /* Initialize bit buffer to empty */
- entropy->saved.put_buffer = 0;
- entropy->saved.put_bits = 0;
- /* Initialize restart stuff */
- entropy->restarts_to_go = cinfo->restart_interval;
- entropy->next_restart_num = 0;
- }
- /*
- * Module initialization routine for Huffman entropy encoding.
- */
- GLOBAL(void)
- jinit_huff_encoder (j_compress_ptr cinfo)
- {
- huff_entropy_ptr entropy;
- int i;
- entropy = (huff_entropy_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(huff_entropy_encoder));
- cinfo->entropy = &entropy->pub;
- entropy->pub.start_pass = start_pass_huff;
- /* Mark tables unallocated */
- for (i = 0; i < NUM_HUFF_TBLS; i++) {
- entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
- entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
- }
- if (cinfo->progressive_mode)
- entropy->bit_buffer = NULL; /* needed only in AC refinement scan */
- }
|