jfdctflt.c 5.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177
  1. /*
  2. * jfdctflt.c
  3. *
  4. * Copyright (C) 1994-1996, Thomas G. Lane.
  5. * Modified 2003-2015 by Guido Vollbeding.
  6. * This file is part of the Independent JPEG Group's software.
  7. * For conditions of distribution and use, see the accompanying README file.
  8. *
  9. * This file contains a floating-point implementation of the
  10. * forward DCT (Discrete Cosine Transform).
  11. *
  12. * This implementation should be more accurate than either of the integer
  13. * DCT implementations. However, it may not give the same results on all
  14. * machines because of differences in roundoff behavior. Speed will depend
  15. * on the hardware's floating point capacity.
  16. *
  17. * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
  18. * on each column. Direct algorithms are also available, but they are
  19. * much more complex and seem not to be any faster when reduced to code.
  20. *
  21. * This implementation is based on Arai, Agui, and Nakajima's algorithm for
  22. * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
  23. * Japanese, but the algorithm is described in the Pennebaker & Mitchell
  24. * JPEG textbook (see REFERENCES section in file README). The following code
  25. * is based directly on figure 4-8 in P&M.
  26. * While an 8-point DCT cannot be done in less than 11 multiplies, it is
  27. * possible to arrange the computation so that many of the multiplies are
  28. * simple scalings of the final outputs. These multiplies can then be
  29. * folded into the multiplications or divisions by the JPEG quantization
  30. * table entries. The AA&N method leaves only 5 multiplies and 29 adds
  31. * to be done in the DCT itself.
  32. * The primary disadvantage of this method is that with a fixed-point
  33. * implementation, accuracy is lost due to imprecise representation of the
  34. * scaled quantization values. However, that problem does not arise if
  35. * we use floating point arithmetic.
  36. */
  37. #define JPEG_INTERNALS
  38. #include "jinclude.h"
  39. #include "jpeglib.h"
  40. #include "jdct.h" /* Private declarations for DCT subsystem */
  41. #ifdef DCT_FLOAT_SUPPORTED
  42. /*
  43. * This module is specialized to the case DCTSIZE = 8.
  44. */
  45. #if DCTSIZE != 8
  46. Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
  47. #endif
  48. /*
  49. * Perform the forward DCT on one block of samples.
  50. *
  51. * cK represents cos(K*pi/16).
  52. */
  53. GLOBAL(void)
  54. jpeg_fdct_float (FAST_FLOAT * data, JSAMPARRAY sample_data, JDIMENSION start_col)
  55. {
  56. FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  57. FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
  58. FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
  59. FAST_FLOAT *dataptr;
  60. JSAMPROW elemptr;
  61. int ctr;
  62. /* Pass 1: process rows. */
  63. dataptr = data;
  64. for (ctr = 0; ctr < DCTSIZE; ctr++) {
  65. elemptr = sample_data[ctr] + start_col;
  66. /* Load data into workspace */
  67. tmp0 = (FAST_FLOAT) (GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]));
  68. tmp7 = (FAST_FLOAT) (GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]));
  69. tmp1 = (FAST_FLOAT) (GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]));
  70. tmp6 = (FAST_FLOAT) (GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]));
  71. tmp2 = (FAST_FLOAT) (GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]));
  72. tmp5 = (FAST_FLOAT) (GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]));
  73. tmp3 = (FAST_FLOAT) (GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]));
  74. tmp4 = (FAST_FLOAT) (GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]));
  75. /* Even part */
  76. tmp10 = tmp0 + tmp3; /* phase 2 */
  77. tmp13 = tmp0 - tmp3;
  78. tmp11 = tmp1 + tmp2;
  79. tmp12 = tmp1 - tmp2;
  80. /* Apply unsigned->signed conversion. */
  81. dataptr[0] = tmp10 + tmp11 - 8 * CENTERJSAMPLE; /* phase 3 */
  82. dataptr[4] = tmp10 - tmp11;
  83. z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
  84. dataptr[2] = tmp13 + z1; /* phase 5 */
  85. dataptr[6] = tmp13 - z1;
  86. /* Odd part */
  87. tmp10 = tmp4 + tmp5; /* phase 2 */
  88. tmp11 = tmp5 + tmp6;
  89. tmp12 = tmp6 + tmp7;
  90. /* The rotator is modified from fig 4-8 to avoid extra negations. */
  91. z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
  92. z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
  93. z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
  94. z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
  95. z11 = tmp7 + z3; /* phase 5 */
  96. z13 = tmp7 - z3;
  97. dataptr[5] = z13 + z2; /* phase 6 */
  98. dataptr[3] = z13 - z2;
  99. dataptr[1] = z11 + z4;
  100. dataptr[7] = z11 - z4;
  101. dataptr += DCTSIZE; /* advance pointer to next row */
  102. }
  103. /* Pass 2: process columns. */
  104. dataptr = data;
  105. for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
  106. tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
  107. tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
  108. tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
  109. tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
  110. tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
  111. tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
  112. tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
  113. tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
  114. /* Even part */
  115. tmp10 = tmp0 + tmp3; /* phase 2 */
  116. tmp13 = tmp0 - tmp3;
  117. tmp11 = tmp1 + tmp2;
  118. tmp12 = tmp1 - tmp2;
  119. dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
  120. dataptr[DCTSIZE*4] = tmp10 - tmp11;
  121. z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
  122. dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
  123. dataptr[DCTSIZE*6] = tmp13 - z1;
  124. /* Odd part */
  125. tmp10 = tmp4 + tmp5; /* phase 2 */
  126. tmp11 = tmp5 + tmp6;
  127. tmp12 = tmp6 + tmp7;
  128. /* The rotator is modified from fig 4-8 to avoid extra negations. */
  129. z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
  130. z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
  131. z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
  132. z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
  133. z11 = tmp7 + z3; /* phase 5 */
  134. z13 = tmp7 - z3;
  135. dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
  136. dataptr[DCTSIZE*3] = z13 - z2;
  137. dataptr[DCTSIZE*1] = z11 + z4;
  138. dataptr[DCTSIZE*7] = z11 - z4;
  139. dataptr++; /* advance pointer to next column */
  140. }
  141. }
  142. #endif /* DCT_FLOAT_SUPPORTED */