123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432 |
- <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
- "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
- <html xmlns="http://www.w3.org/1999/xhtml">
- <head>
- <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
- <title>Image — Image Features Extraction 1.0.0 documentation</title>
- <link rel="stylesheet" href="../_static/alabaster.css" type="text/css" />
- <link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
- <script type="text/javascript">
- var DOCUMENTATION_OPTIONS = {
- URL_ROOT: '../',
- VERSION: '1.0.0',
- COLLAPSE_INDEX: false,
- FILE_SUFFIX: '.html',
- HAS_SOURCE: true,
- SOURCELINK_SUFFIX: '.txt'
- };
- </script>
- <script type="text/javascript" src="../_static/jquery.js"></script>
- <script type="text/javascript" src="../_static/underscore.js"></script>
- <script type="text/javascript" src="../_static/doctools.js"></script>
- <link rel="index" title="Index" href="../genindex.html" />
- <link rel="search" title="Search" href="../search.html" />
-
- <link rel="stylesheet" href="../_static/custom.css" type="text/css" />
-
-
- <meta name="viewport" content="width=device-width, initial-scale=0.9, maximum-scale=0.9" />
- </head>
- <body>
-
- <div class="document">
- <div class="documentwrapper">
- <div class="bodywrapper">
- <div class="body" role="main">
-
- <h1>Source code for Image</h1><div class="highlight"><pre>
- <span></span>
- <span class="kn">import</span> <span class="nn">pandas</span> <span class="k">as</span> <span class="nn">pd</span>
- <span class="kn">import</span> <span class="nn">scipy.misc</span> <span class="k">as</span> <span class="nn">sm</span>
- <span class="kn">from</span> <span class="nn">skimage.measure</span> <span class="k">import</span> <span class="n">label</span>
- <span class="kn">from</span> <span class="nn">skimage.segmentation</span> <span class="k">import</span> <span class="n">clear_border</span>
- <span class="kn">from</span> <span class="nn">skimage.color</span> <span class="k">import</span> <span class="n">label2rgb</span>
- <span class="kn">from</span> <span class="nn">skimage.measure</span> <span class="k">import</span> <span class="n">label</span><span class="p">,</span> <span class="n">regionprops</span>
- <span class="kn">from</span> <span class="nn">skimage</span> <span class="k">import</span> <span class="n">filters</span><span class="p">,</span> <span class="n">io</span>
- <span class="kn">from</span> <span class="nn">image_features_extraction</span> <span class="k">import</span> <span class="n">Regions</span>
- <span class="kn">from</span> <span class="nn">image_features_extraction</span> <span class="k">import</span> <span class="n">MyException</span>
- <span class="kn">from</span> <span class="nn">image_features_extraction</span> <span class="k">import</span> <span class="n">Features</span>
- <span class="kn">from</span> <span class="nn">image_features_extraction</span> <span class="k">import</span> <span class="n">Utils</span>
- <span class="kn">import</span> <span class="nn">Voronoi_Features.Voronoi</span> <span class="k">as</span> <span class="nn">VF</span>
- <div class="viewcode-block" id="Image"><a class="viewcode-back" href="../code.html#Image.Image">[docs]</a><span class="k">class</span> <span class="nc">Image</span><span class="p">(</span><span class="nb">object</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> This class instantiate an object Image through the :class:`Images` and refers to a specific file image</span>
- <span class="sd"> :example:</span>
- <span class="sd"> >>> import image_features_extraction as fe</span>
- <span class="sd"> >>> imgs = fe.Images(folder_name)</span>
- <span class="sd"> >>> img = imgs.item(1)</span>
- <span class="sd"> """</span>
- <span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">full_name</span><span class="p">):</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">__full_file_name</span> <span class="o">=</span> <span class="n">full_name</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">__regions</span> <span class="o">=</span> <span class="kc">None</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">__regionsprops</span> <span class="o">=</span> <span class="kc">None</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">__image_intensity</span> <span class="o">=</span> <span class="kc">None</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">__image</span> <span class="o">=</span> <span class="kc">None</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">__image_semented</span> <span class="o">=</span> <span class="kc">None</span>
- <span class="k">try</span><span class="p">:</span>
- <span class="c1"># load image and segment</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">__image</span> <span class="o">=</span> <span class="n">io</span><span class="o">.</span><span class="n">imread</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">__full_file_name</span><span class="p">)</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">__image_semented</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">__get_regions</span><span class="p">()</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">__regionsprops</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">__get_regionsprop</span><span class="p">()</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">__centroids</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">prop_values</span><span class="p">(</span><span class="s1">'centroid'</span><span class="p">)</span>
- <span class="k">except</span> <span class="n">MyException</span><span class="o">.</span><span class="n">MyException</span> <span class="k">as</span> <span class="n">e</span><span class="p">:</span>
- <span class="nb">print</span><span class="p">(</span><span class="n">e</span><span class="o">.</span><span class="n">args</span><span class="p">)</span>
- <div class="viewcode-block" id="Image.Voronoi"><a class="viewcode-back" href="../code.html#Image.Image.Voronoi">[docs]</a> <span class="k">def</span> <span class="nf">Voronoi</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> Image Voronoi diagram (refer to documentaiton of my package Voronoi_Features in my github )</span>
- <span class="sd"> :return: Voronoi object for the current image</span>
- <span class="sd"> :rtype: Voronoi object</span>
- <span class="sd"> >>> import matplotlib.pyplot as plt</span>
- <span class="sd"> >>></span>
- <span class="sd"> >>> import image_features_extraction as fe</span>
- <span class="sd"> >>></span>
- <span class="sd"> >>> imgs = fe.Images(folder_name)</span>
- <span class="sd"> >>> img = imgs.item(1)</span>
- <span class="sd"> >>></span>
- <span class="sd"> >>> voro = img.Voronoi()</span>
- <span class="sd"> >>> # show voronoi diagram</span>
- <span class="sd"> >>> fig = plt.figure(figsize=(20,20))</span>
- <span class="sd"> >>> plt.imshow(vor.get_voronoi_map(), cmap=plt.get_cmap('jet'))</span>
- <span class="sd"> """</span>
- <span class="k">return</span> <span class="n">VF</span><span class="o">.</span><span class="n">Voronoi</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">__centroids</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">__image</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="bp">self</span><span class="o">.</span><span class="n">__image</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span></div>
- <div class="viewcode-block" id="Image.width"><a class="viewcode-back" href="../code.html#Image.Image.width">[docs]</a> <span class="k">def</span> <span class="nf">width</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
- <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">__image</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span></div>
- <div class="viewcode-block" id="Image.height"><a class="viewcode-back" href="../code.html#Image.Image.height">[docs]</a> <span class="k">def</span> <span class="nf">height</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
- <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">__image</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span></div>
- <div class="viewcode-block" id="Image.file_name"><a class="viewcode-back" href="../code.html#Image.Image.file_name">[docs]</a> <span class="k">def</span> <span class="nf">file_name</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> full file name of the image</span>
- <span class="sd"> :returns: file name</span>
- <span class="sd"> :rtype: string</span>
- <span class="sd"> """</span>
- <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">__full_file_name</span></div>
- <div class="viewcode-block" id="Image.set_image_intensity"><a class="viewcode-back" href="../code.html#Image.Image.set_image_intensity">[docs]</a> <span class="k">def</span> <span class="nf">set_image_intensity</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">image_intensity</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> Sets the image to measurs image's region intensity properties (e.g, mean_intensity)</span>
- <span class="sd"> : param image_intensity: Image object for intensity measurement</span>
- <span class="sd"> : type image_intensity: Object Image</span>
- <span class="sd"> :returns: the set Image object for intensity measurement</span>
- <span class="sd"> :rtype: Object Image</span>
- <span class="sd"> >>> import image_features_extraction as fe</span>
- <span class="sd"> >>> imgs = fe.Images(folder_name)</span>
- <span class="sd"> >>> img = imgs.item(1) # this is the binary image used for segmentation</span>
- <span class="sd"> >>> img_intensity = imgs.item(0) # this is the original image on which to measure intensities</span>
- <span class="sd"> >>> img.set_image_intensity(img_intensity)</span>
- <span class="sd"> >>> features = IMG.features(['label', 'area','perimeter', 'centroid','major_axis_length', 'moments','mean_intensity'], class_value=5)</span>
- <span class="sd"> """</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">__image_intensity</span> <span class="o">=</span> <span class="n">image_intensity</span><span class="o">.</span><span class="n">__image</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">__regionsprops</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">__get_regionsprop</span><span class="p">()</span></div>
- <div class="viewcode-block" id="Image.regions"><a class="viewcode-back" href="../code.html#Image.Image.regions">[docs]</a> <span class="k">def</span> <span class="nf">regions</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> regions(...) returns the Object Regions</span>
- <span class="sd"> :returns: :class:`Regions`</span>
- <span class="sd"> :rtype: string</span>
- <span class="sd"> >>> import image_features_extraction as fe</span>
- <span class="sd"> >>> imgs = fe.Images(folder_name)</span>
- <span class="sd"> >>> img = imgs.item(1)</span>
- <span class="sd"> >>> regs = img.Regions()</span>
- <span class="sd"> """</span>
- <span class="k">try</span><span class="p">:</span>
- <span class="k">return</span> <span class="n">Regions</span><span class="o">.</span><span class="n">Regions</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">__image_semented</span><span class="p">)</span> <span class="c1"># (self.__get_regions())</span>
- <span class="k">except</span> <span class="n">MyException</span><span class="o">.</span><span class="n">MyException</span> <span class="k">as</span> <span class="n">e</span><span class="p">:</span>
- <span class="nb">print</span><span class="p">(</span><span class="n">e</span><span class="o">.</span><span class="n">args</span><span class="p">)</span>
- <span class="k">return</span> <span class="kc">None</span></div>
- <span class="k">def</span> <span class="nf">__get_regions</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
- <span class="c1"># apply thresholding</span>
- <span class="n">val</span> <span class="o">=</span> <span class="n">filters</span><span class="o">.</span><span class="n">threshold_otsu</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">__image</span><span class="p">)</span>
- <span class="c1"># segmentation</span>
- <span class="n">image_thresh</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">__image</span> <span class="o">></span> <span class="n">val</span>
- <span class="c1"># returns the single segmented elements of the image</span>
- <span class="n">image_segment</span> <span class="o">=</span> <span class="n">label</span><span class="p">(</span><span class="n">image_thresh</span><span class="p">)</span>
- <span class="c1"># removes the image elements at the borde</span>
- <span class="k">return</span> <span class="n">clear_border</span><span class="p">(</span><span class="n">image_segment</span><span class="p">)</span>
- <span class="c1">#def __get_mask(self, redo=False):</span>
- <span class="c1"># if redo == False:</span>
- <span class="c1"># return self.__mask</span>
- <span class="c1"># # ithresholding to build the map</span>
- <span class="c1"># val = filters.threshold_otsu(self.__image)</span>
- <span class="c1"># # cretes the mask</span>
- <span class="c1"># return self.__image > val</span>
- <span class="k">def</span> <span class="nf">__get_regionsprop</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
- <span class="k">return</span> <span class="n">regionprops</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">__get_regions</span><span class="p">(),</span> <span class="n">intensity_image</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">__image_intensity</span><span class="p">)</span>
- <div class="viewcode-block" id="Image.get_image_segmentation"><a class="viewcode-back" href="../code.html#Image.Image.get_image_segmentation">[docs]</a> <span class="k">def</span> <span class="nf">get_image_segmentation</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> Builds the image with mask overlay to show the segmentation</span>
- <span class="sd"> :returns: The image in RGB format, in a 3-D array of shape (.., .., 3).</span>
- <span class="sd"> :rtype: ndarray</span>
- <span class="sd"> """</span>
- <span class="k">try</span><span class="p">:</span>
- <span class="k">return</span> <span class="n">label2rgb</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">__get_regions</span><span class="p">(),</span> <span class="n">image</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">__image</span><span class="p">)</span>
- <span class="k">except</span> <span class="n">MyException</span><span class="o">.</span><span class="n">MyException</span> <span class="k">as</span> <span class="n">e</span><span class="p">:</span>
- <span class="nb">print</span><span class="p">(</span><span class="n">e</span><span class="o">.</span><span class="n">args</span><span class="p">)</span>
- <span class="k">return</span> <span class="kc">None</span></div>
- <div class="viewcode-block" id="Image.features"><a class="viewcode-back" href="../code.html#Image.Image.features">[docs]</a> <span class="k">def</span> <span class="nf">features</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">features_list</span><span class="p">,</span> <span class="n">prefix</span><span class="o">=</span><span class="s1">''</span><span class="p">,</span> <span class="n">suffix</span><span class="o">=</span><span class="s1">''</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> Returns a table with all values for the property names given in input, and supplies an</span>
- <span class="sd"> additional parameter for feature classification</span>
- <span class="sd"> :param features_list: list of property/measure names (e.g, 'area', 'centroid', etc )</span>
- <span class="sd"> :type features_list: List</span>
- <span class="sd"> :param prefix: prefix for features name</span>
- <span class="sd"> :type prefix: string</span>
- <span class="sd"> :param suffix: prefix for features name</span>
- <span class="sd"> :type suffix: string</span>
- <span class="sd"> :returns: Features Object</span>
- <span class="sd"> :rtype: Features Object</span>
- <span class="sd"> :example:</span>
- <span class="sd"> >>> import image_features_extraction as fe</span>
- <span class="sd"> >>> imgs = fe.Images(folder_name)</span>
- <span class="sd"> >>> img = imgs.item(1)</span>
- <span class="sd"> >>> feature = img.get_features(['label', 'area','perimeter', 'centroid'])</span>
- <span class="sd"> """</span>
- <span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">()</span>
- <span class="k">try</span><span class="p">:</span>
- <span class="c1">#self.__regionsprops = self.__get_regionsprop()</span>
- <span class="n">n</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">__regionsprops</span><span class="p">)</span>
- <span class="n">df</span><span class="p">[</span><span class="s1">'id'</span><span class="p">]</span> <span class="o">=</span> <span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="n">n</span><span class="p">)</span>
- <span class="k">for</span> <span class="n">feature_name</span> <span class="ow">in</span> <span class="n">features_list</span><span class="p">:</span>
- <span class="n">values</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">prop_values</span><span class="p">(</span><span class="n">feature_name</span><span class="p">)</span>
- <span class="n">Utils</span><span class="o">.</span><span class="n">insert_values</span><span class="p">(</span><span class="n">prefix</span> <span class="o">+</span> <span class="n">feature_name</span> <span class="o">+</span> <span class="n">suffix</span><span class="p">,</span> <span class="n">df</span><span class="p">,</span> <span class="n">values</span><span class="p">)</span>
- <span class="k">return</span> <span class="n">Features</span><span class="o">.</span><span class="n">Features</span><span class="p">(</span><span class="n">df</span><span class="p">)</span>
- <span class="k">except</span> <span class="ne">Exception</span> <span class="k">as</span> <span class="n">e</span><span class="p">:</span>
- <span class="nb">print</span><span class="p">(</span><span class="s2">"one or more input labels might be wrong:</span><span class="si">{}</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">e</span><span class="p">))</span>
- <span class="k">return</span> <span class="kc">None</span></div>
- <div class="viewcode-block" id="Image.prop_values"><a class="viewcode-back" href="../code.html#Image.Image.prop_values">[docs]</a> <span class="k">def</span> <span class="nf">prop_values</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">prop_name</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> Measure the values of the specified property/measure name (e.g., 'area') for all</span>
- <span class="sd"> elements contained in the object Regions.</span>
- <span class="sd"> :param prop_name: name of the property to measure (e.g, 'area')</span>
- <span class="sd"> :type prop_name: string</span>
- <span class="sd"> :returns: property name values</span>
- <span class="sd"> :rtype: List</span>
- <span class="sd"> :example:</span>
- <span class="sd"> >>> import image_features_extraction as fe</span>
- <span class="sd"> >>> imgs = fe.Images(folder_name)</span>
- <span class="sd"> >>> img = imgs.item(1)</span>
- <span class="sd"> >>> regs = img.Regions()</span>
- <span class="sd"> >>> areas = regs.prop_values('area')</span>
- <span class="sd"> The following properties can be accessed as attributes or keys:</span>
- <span class="sd"> **area** : int</span>
- <span class="sd"> Number of pixels of region.</span>
- <span class="sd"> **bbox** : tuple</span>
- <span class="sd"> Bounding box ``(min_row, min_col, max_row, max_col)``.</span>
- <span class="sd"> Pixels belonging to the bounding box are in the half-open interval</span>
- <span class="sd"> ``[min_row; max_row)`` and ``[min_col; max_col)``.</span>
- <span class="sd"> **bbox_area** : int</span>
- <span class="sd"> Number of pixels of bounding box.</span>
- <span class="sd"> **centroid** : array</span>
- <span class="sd"> Centroid coordinate tuple ``(row, col)``.</span>
- <span class="sd"> **convex_area** : int</span>
- <span class="sd"> Number of pixels of convex hull image.</span>
- <span class="sd"> **convex_image** : (H, J) ndarray</span>
- <span class="sd"> Binary convex hull image which has the same size as bounding box.</span>
- <span class="sd"> **coords** : (N, 2) ndarray</span>
- <span class="sd"> Coordinate list ``(row, col)`` of the region.</span>
- <span class="sd"> **eccentricity** : float</span>
- <span class="sd"> Eccentricity of the ellipse that has the same second-moments as the</span>
- <span class="sd"> region. The eccentricity is the ratio of the focal distance</span>
- <span class="sd"> (distance between focal points) over the major axis length.</span>
- <span class="sd"> The value is in the interval [0, 1).</span>
- <span class="sd"> When it is 0, the ellipse becomes a circle.</span>
- <span class="sd"> **equivalent_diameter** : float</span>
- <span class="sd"> The diameter of a circle with the same area as the region.</span>
- <span class="sd"> **euler_number** : int</span>
- <span class="sd"> Euler characteristic of region. Computed as number of objects (= 1)</span>
- <span class="sd"> subtracted by number of holes (8-connectivity).</span>
- <span class="sd"> **extent** : float</span>
- <span class="sd"> Ratio of pixels in the region to pixels in the total bounding box.</span>
- <span class="sd"> Computed as ``area / (rows * cols)``</span>
- <span class="sd"> **filled_area** : int</span>
- <span class="sd"> Number of pixels of filled region.</span>
- <span class="sd"> **filled_image** : (H, J) ndarray</span>
- <span class="sd"> Binary region image with filled holes which has the same size as</span>
- <span class="sd"> bounding box.</span>
- <span class="sd"> **image** : (H, J) ndarray</span>
- <span class="sd"> Sliced binary region image which has the same size as bounding box.</span>
- <span class="sd"> **inertia_tensor** : (2, 2) ndarray</span>
- <span class="sd"> Inertia tensor of the region for the rotation around its mass.</span>
- <span class="sd"> **inertia_tensor_eigvals** : tuple</span>
- <span class="sd"> The two eigen values of the inertia tensor in decreasing order.</span>
- <span class="sd"> **intensity_image** : ndarray</span>
- <span class="sd"> Image inside region bounding box.</span>
- <span class="sd"> **label** : int</span>
- <span class="sd"> The label in the labeled input image.</span>
- <span class="sd"> **local_centroid** : array</span>
- <span class="sd"> Centroid coordinate tuple ``(row, col)``, relative to region bounding</span>
- <span class="sd"> box.</span>
- <span class="sd"> **major_axis_length** : float</span>
- <span class="sd"> The length of the major axis of the ellipse that has the same</span>
- <span class="sd"> normalized second central moments as the region.</span>
- <span class="sd"> **max_intensity** : float</span>
- <span class="sd"> Value with the greatest intensity in the region.</span>
- <span class="sd"> **mean_intensity** : float</span>
- <span class="sd"> Value with the mean intensity in the region.</span>
- <span class="sd"> **min_intensity** : float</span>
- <span class="sd"> Value with the least intensity in the region.</span>
- <span class="sd"> **minor_axis_length** : float</span>
- <span class="sd"> The length of the minor axis of the ellipse that has the same</span>
- <span class="sd"> normalized second central moments as the region.</span>
- <span class="sd"> **moments** : (3, 3) ndarray</span>
- <span class="sd"> Spatial moments up to 3rd order::</span>
- <span class="sd"> m_ji = sum{ array(x, y) * x^j * y^i }</span>
- <span class="sd"> where the sum is over the `x`, `y` coordinates of the region.</span>
- <span class="sd"> **moments_central** : (3, 3) ndarray</span>
- <span class="sd"> Central moments (translation invariant) up to 3rd order::</span>
- <span class="sd"> mu_ji = sum{ array(x, y) * (x - x_c)^j * (y - y_c)^i }</span>
- <span class="sd"> where the sum is over the `x`, `y` coordinates of the region,</span>
- <span class="sd"> and `x_c` and `y_c` are the coordinates of the region's centroid.</span>
- <span class="sd"> **moments_hu** : tuple</span>
- <span class="sd"> Hu moments (translation, scale and rotation invariant).</span>
- <span class="sd"> **moments_normalized** : (3, 3) ndarray</span>
- <span class="sd"> Normalized moments (translation and scale invariant) up to 3rd order::</span>
- <span class="sd"> nu_ji = mu_ji / m_00^[(i+j)/2 + 1]</span>
- <span class="sd"> where `m_00` is the zeroth spatial moment.</span>
- <span class="sd"> **orientation** : float</span>
- <span class="sd"> Angle between the X-axis and the major axis of the ellipse that has</span>
- <span class="sd"> the same second-moments as the region. Ranging from `-pi/2` to</span>
- <span class="sd"> `pi/2` in counter-clockwise direction.</span>
- <span class="sd"> **perimeter** : float</span>
- <span class="sd"> Perimeter of object which approximates the contour as a line</span>
- <span class="sd"> through the centers of border pixels using a 4-connectivity.</span>
- <span class="sd"> **solidity** : float</span>
- <span class="sd"> Ratio of pixels in the region to pixels of the convex hull image.</span>
- <span class="sd"> **weighted_centroid** : array</span>
- <span class="sd"> Centroid coordinate tuple ``(row, col)`` weighted with intensity</span>
- <span class="sd"> image.</span>
- <span class="sd"> **weighted_local_centroid** : array</span>
- <span class="sd"> Centroid coordinate tuple ``(row, col)``, relative to region bounding</span>
- <span class="sd"> box, weighted with intensity image.</span>
- <span class="sd"> **weighted_moments** : (3, 3) ndarray</span>
- <span class="sd"> Spatial moments of intensity image up to 3rd order::</span>
- <span class="sd"> wm_ji = sum{ array(x, y) * x^j * y^i }</span>
- <span class="sd"> where the sum is over the `x`, `y` coordinates of the region.</span>
- <span class="sd"> **weighted_moments_central** : (3, 3) ndarray</span>
- <span class="sd"> Central moments (translation invariant) of intensity image up to</span>
- <span class="sd"> 3rd order::</span>
- <span class="sd"> wmu_ji = sum{ array(x, y) * (x - x_c)^j * (y - y_c)^i }</span>
- <span class="sd"> where the sum is over the `x`, `y` coordinates of the region,</span>
- <span class="sd"> and `x_c` and `y_c` are the coordinates of the region's weighted</span>
- <span class="sd"> centroid.</span>
- <span class="sd"> **weighted_moments_hu** : tuple</span>
- <span class="sd"> Hu moments (translation, scale and rotation invariant) of intensity</span>
- <span class="sd"> image.</span>
- <span class="sd"> **weighted_moments_normalized** : (3, 3) ndarray</span>
- <span class="sd"> Normalized moments (translation and scale invariant) of intensity</span>
- <span class="sd"> image up to 3rd order::</span>
- <span class="sd"> wnu_ji = wmu_ji / wm_00^[(i+j)/2 + 1]</span>
- <span class="sd"> where ``wm_00`` is the zeroth spatial moment (intensity-weighted area).</span>
- <span class="sd"> .. [1] http://scikit-image.org/docs/dev/api/skimage.measure.html#skimage.measure.regionprops</span>
- <span class="sd"> """</span>
- <span class="k">try</span><span class="p">:</span>
- <span class="n">vals</span> <span class="o">=</span> <span class="p">[]</span>
- <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">__regionsprops</span><span class="p">:</span>
- <span class="n">vals</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="nb">getattr</span><span class="p">(</span><span class="n">i</span><span class="p">,</span> <span class="n">prop_name</span><span class="p">))</span>
- <span class="k">return</span> <span class="n">vals</span>
- <span class="k">except</span> <span class="ne">Exception</span> <span class="k">as</span> <span class="n">e</span><span class="p">:</span>
- <span class="nb">print</span><span class="p">(</span><span class="n">e</span><span class="o">.</span><span class="n">args</span><span class="p">)</span>
- <span class="k">return</span> <span class="kc">None</span></div></div>
- </pre></div>
- </div>
- </div>
- </div>
- <div class="sphinxsidebar" role="navigation" aria-label="main navigation">
- <div class="sphinxsidebarwrapper">
- <h1 class="logo"><a href="../index.html">Image Features Extraction</a></h1>
- <h3>Navigation</h3>
- <ul>
- <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">Tutorial</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../code.html">Classes/Modules</a></li>
- </ul>
- <div class="relations">
- <h3>Related Topics</h3>
- <ul>
- <li><a href="../index.html">Documentation overview</a><ul>
- <li><a href="index.html">Module code</a><ul>
- </ul></li>
- </ul></li>
- </ul>
- </div>
- <div id="searchbox" style="display: none" role="search">
- <h3>Quick search</h3>
- <form class="search" action="../search.html" method="get">
- <div><input type="text" name="q" /></div>
- <div><input type="submit" value="Go" /></div>
- <input type="hidden" name="check_keywords" value="yes" />
- <input type="hidden" name="area" value="default" />
- </form>
- </div>
- <script type="text/javascript">$('#searchbox').show(0);</script>
- </div>
- </div>
- <div class="clearer"></div>
- </div>
- <div class="footer">
- ©2017, Remigio Picone.
-
- |
- Powered by <a href="http://sphinx-doc.org/">Sphinx 1.6.3</a>
- & <a href="https://github.com/bitprophet/alabaster">Alabaster 0.7.10</a>
-
- </div>
-
-
- </body>
- </html>
|