from image_features_extraction import MyException class Region(object): """ Object refering to a single image region """ def __init__(self, obj_region): if obj_region is None: raise MyException.MyException self.__obj_region = obj_region def prop_value(self, prop_name): """ Measure the specified property name (e.g., 'area') :param prop_name: name of the property to measure (e.g, 'area') :type prop_name: string :returns: value of the property name :rtype: int,float,list :example: >>> import image_features_extraction as fe >>> imgs = fe.Images(folder_name) >>> img = imgs.item(1) >>> regs = img.Regions() >>> reg = regs.Region() >>> area = reg.prop_value('area') The following properties can be accessed as attributes or keys: **area** : int Number of pixels of region. **bbox** : tuple Bounding box ``(min_row, min_col, max_row, max_col)``. Pixels belonging to the bounding box are in the half-open interval ``[min_row; max_row)`` and ``[min_col; max_col)``. **bbox_area** : int Number of pixels of bounding box. **centroid** : array Centroid coordinate tuple ``(row, col)``. **convex_area** : int Number of pixels of convex hull image. **convex_image** : (H, J) ndarray Binary convex hull image which has the same size as bounding box. **coords** : (N, 2) ndarray Coordinate list ``(row, col)`` of the region. **eccentricity** : float Eccentricity of the ellipse that has the same second-moments as the region. The eccentricity is the ratio of the focal distance (distance between focal points) over the major axis length. The value is in the interval [0, 1). When it is 0, the ellipse becomes a circle. **equivalent_diameter** : float The diameter of a circle with the same area as the region. **euler_number** : int Euler characteristic of region. Computed as number of objects (= 1) subtracted by number of holes (8-connectivity). **extent** : float Ratio of pixels in the region to pixels in the total bounding box. Computed as ``area / (rows * cols)`` **filled_area** : int Number of pixels of filled region. **filled_image** : (H, J) ndarray Binary region image with filled holes which has the same size as bounding box. **image** : (H, J) ndarray Sliced binary region image which has the same size as bounding box. **inertia_tensor** : (2, 2) ndarray Inertia tensor of the region for the rotation around its mass. **inertia_tensor_eigvals** : tuple The two eigen values of the inertia tensor in decreasing order. **intensity_image** : ndarray Image inside region bounding box. **label** : int The label in the labeled input image. **local_centroid** : array Centroid coordinate tuple ``(row, col)``, relative to region bounding box. **major_axis_length** : float The length of the major axis of the ellipse that has the same normalized second central moments as the region. **max_intensity** : float Value with the greatest intensity in the region. **mean_intensity** : float Value with the mean intensity in the region. **min_intensity** : float Value with the least intensity in the region. **minor_axis_length** : float The length of the minor axis of the ellipse that has the same normalized second central moments as the region. **moments** : (3, 3) ndarray Spatial moments up to 3rd order:: m_ji = sum{ array(x, y) * x^j * y^i } where the sum is over the `x`, `y` coordinates of the region. **moments_central** : (3, 3) ndarray Central moments (translation invariant) up to 3rd order:: mu_ji = sum{ array(x, y) * (x - x_c)^j * (y - y_c)^i } where the sum is over the `x`, `y` coordinates of the region, and `x_c` and `y_c` are the coordinates of the region's centroid. **moments_hu** : tuple Hu moments (translation, scale and rotation invariant). **moments_normalized** : (3, 3) ndarray Normalized moments (translation and scale invariant) up to 3rd order:: nu_ji = mu_ji / m_00^[(i+j)/2 + 1] where `m_00` is the zeroth spatial moment. **orientation** : float Angle between the X-axis and the major axis of the ellipse that has the same second-moments as the region. Ranging from `-pi/2` to `pi/2` in counter-clockwise direction. **perimeter** : float Perimeter of object which approximates the contour as a line through the centers of border pixels using a 4-connectivity. **solidity** : float Ratio of pixels in the region to pixels of the convex hull image. **weighted_centroid** : array Centroid coordinate tuple ``(row, col)`` weighted with intensity image. **weighted_local_centroid** : array Centroid coordinate tuple ``(row, col)``, relative to region bounding box, weighted with intensity image. **weighted_moments** : (3, 3) ndarray Spatial moments of intensity image up to 3rd order:: wm_ji = sum{ array(x, y) * x^j * y^i } where the sum is over the `x`, `y` coordinates of the region. **weighted_moments_central** : (3, 3) ndarray Central moments (translation invariant) of intensity image up to 3rd order:: wmu_ji = sum{ array(x, y) * (x - x_c)^j * (y - y_c)^i } where the sum is over the `x`, `y` coordinates of the region, and `x_c` and `y_c` are the coordinates of the region's weighted centroid. **weighted_moments_hu** : tuple Hu moments (translation, scale and rotation invariant) of intensity image. **weighted_moments_normalized** : (3, 3) ndarray Normalized moments (translation and scale invariant) of intensity image up to 3rd order:: wnu_ji = wmu_ji / wm_00^[(i+j)/2 + 1] where ``wm_00`` is the zeroth spatial moment (intensity-weighted area). """ try: return getattr(self.__obj_region, prop_name) except Exception as e: print(e.args) return None